
SPACE-TIME SIGNALING AND FRAME THEORY

Robert W. Heath Jr., Helmut Bölcskei, and Arogyaswami J. Paulraj

Information Systems Laboratory, Stanford University
Packard 234, 350 Serra Mall, Stanford CA 94305-9510

Phone: (650)724-3645, Fax: (650)723-8473, email: rheath@stanford.edu

ABSTRACT
Wireless systems with multiple transmit and receive anten-
nas (MIMO systems) provide high capacity due to the plu-
rality of modes available in the channel. Previous code de-
signs for MIMO systems have focused primarily on multi-
plexed signaling for high data rate or diversity signaling for
high link reliability. In this paper, based on previous work
reported in [1, 2], and using results from frame theory, we
present a MIMO space-time code design which bridges the
gap between multiplexing and diversity and performs well
both in terms of ergodic capacity as well as error probabil-
ity. In particular, we demonstrate that designs performing
well from an ergodic capacity point of view do not neces-
sarily perform well from an error probability point of view.
Simulations illustrate performance of the proposed codes in
narrowband MIMO Rayleigh fading channels.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) antenna systems,
i.e., wireless systems with multiple transmit and receive an-
tennas, have high capacity both in theory [3, 4, 5] and in
practical implementations [6]. Signaling, or coding, for
MIMO systems, however, has been primarily limited to
multiplexing [7, 3] and diversity [8, 9] modes of opera-
tion. Multiplexing refers to transmission of independent
streams of data from each transmit antenna while diversity
refers to transmission of multiple different “replicas” of the
same data on each transmit antenna. Multiplexing trans-
mission provides high throughput whereas diversity trans-
mission aims at high link reliability. In practice, it is desir-
able to have the flexibility to distribute the available degrees
of freedom between multiplexing and diversity. Therefore,
code designs that fall between multiplexing and diversity
modes of operation are needed.

Contributions. In this paper we use the linear coding
framework introduced in [1], and later extended in [2], in
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which space-time codeword matrices are obtained as lin-
ear combinations of certain basis matrices with the expan-
sion coefficients being scalar complex-valued data symbols.
Therefore, different linear combinations of scalar data sym-
bols are transmitted on each antenna. We derive the ergodic
capacity of the effective channel induced by this signaling
scheme and compute an upper bound on its pairwise error
probability (PEP) for the independent identically distributed
(i.i.d.) Rayleigh fading case. Based on a capacity bound, we
derive optimum coding matrices. The resulting criterion is
shown to be equivalent to requiring that a certain stacked
codeword matrix yields a tight frame [10]. To ensure good
performance in terms of symbol error rate as well we im-
pose a side constraint taking into account the PEP.

Relation to previous work. Previous work has focused
primarily on pure spatial multiplexing transmission [3, 7] or
transmit diversity (i.e., space-time coding) [1, 8, 9]. Diver-
sity versus multiplexing comparisons can be found in [11] in
terms of instantaneous probability of error. Alternative code
designs for the framework in [1] have also appeared in [2]
based on ergodic capacity. Compared with [1, 2], we take
into account both error probability and ergodic capacity,
we present an upper bound on PEP, and we derive a novel
criterion for code design which relates to tight frames [10].
Simulations show that while codes can perform equally well
from an ergodic capacity point of view, there can be signifi-
cant differences from an error rate point of view. Thus, tak-
ing into account error probability is necessary to guarantee
reliability of the proposed codes.

Organization of the paper. The rest of this paper is or-
ganized as follows. In Section 2, we describe the signaling
scheme, derive its ergodic capacity, and present an upper-
bound on the PEP. In Section 3, we present a code design
criterion based on an upper bound on ergodic capacity and
show that such codes are related to tight frames. Section 4
provides Monte-Carlo simulations of some proposed codes.
Finally, Section 5 contains our conclusions.

2. CODES, CAPACITY, AND PEP

In this section, we shall describe the framework for space-
time code design for MIMO systems based on linear matrix
modulation.



Code Description. Let fsng
N�1

n=0
denote a block of N

complex symbols (possibly coded) with R bits per symbol.
A matrix modulation code for a system with Mt transmit
antennas, Mr receive antennas, and block length of T time
symbols is described as follows. Define the basis matrices
of the code as the set of Mt�T matrices fMng

N�1

n=0
which

are possibly complex. The transmitted codeword will be the
Mt � T matrix constructed by taking a linear combination
of these matrices according to

M(s0; s1; ::: ; sN�1) :=

N�1X
n=0

Mnsn: (1)

One column of M is transmitted per symbol period over T
periods. Note that the effect of the code is to spread ev-
ery symbol across every transmit antenna in every time slot.
The approach in (1) differs from that in [1, 2] in that we do
not take additional linear combinations as a function of the
conjugate data symbols s�

n
.

While (1) provides intuition, an alternative representa-
tion leads to a more efficient analytical representation. Let
the Mt �N matricesXt be given by

Xt := [M0;t M1;t ::: MN�1;t]

for t = 0; 1; : : : ; T �1, whereMi;t denotes the t-th column
of the matrix Mi. Define1 s := [s0; s1; ::: ; sN�1]

T . In
what follows we assume that the channelH is an Mr �Mt

matrix of complex gaussian CN (0; 1) coefficients, with co-
herence time T symbols. The output of the t-th transmission
can be written as

yt =
p
Es HXt s + vt; t = 0; 1; ::: ; T � 1; (2)

where yt is anMr�1 received data vector and vt is an i.i.d.
complex gaussian spatially white noise vector distributed as
CN (0; NoIMr

).
For convenience stack T observations at the receiver.

Let y := [yT
0
yT
1
: : :yT

T�1
]T , v := [vT

0
vT
1
: : :vT

T�1
]T ,

X := [XT
0
XT
1
: : : XT

T�1
]T , andH := IT 
H where
 is

the Kronecker product. Then (2) becomes

y =
p
EsH X s + v: (3)

We furthermore assume the following normalizations 2: (i)
Efjsnj

2g = 1 for all n and (ii) tr(XHX ) = T to make
comparisons fair with other coded/uncoded systems. Effec-
tively (3) is an input-output relationship of an MrT � N

MIMO system with equivalent channelH X .
Capacity of Proposed Signaling Scheme. Let Q be

the N � N covariance matrix corresponding to the zero-
mean input vector s. The ergodic capacity in bits/s/Hz of

1The superscripts T , H , and � stand for transposition, conjugate trans-
position, and elementwise conjugation, respectively.

2E denotes the expectation operator.

the system in (3) for a given X can be written as

C = max
tr(Q)=T

1

T
EH

�
log det

�
IMrT +

Es

No
HXQX

H
H
H

��
;

where EH stands for expectation with respect to the chan-
nel. The normalization by 1=T accounts for the spreading
of information across time.

In the code design problem we seekXQX H which max-
imizes ergodic capacity. Since there is no channel knowl-
edge at the transmitter we set Q = I. The capacity of the
optimum code design is written as

C = max
tr(XH

X)=T

1

T
EH

�
log det

�
IMrT +

Es

No
HXX

H
H
H

��
:

(4)
Observe from (4) that the number of modes available in the
system is min(MtT;MrT;N). In what follows we assume
that N �MtT thus X is square or tall.

A few comments on (4) in relation to other block mod-
ulation schemes proposed in the literature are in order. For
Mr = 1, Mt = 2, and T = 2, N = 2 gives the maximum
number of modes which is achieved by the real-symbol ver-
sion of the Alamouti transmit diversity scheme [9]. For
Mr = 2, however, there are N = 4 modes available thus
the Alamouti scheme incurs a loss in capacity [12], whereas
simple spatial multiplexing [7] achieves full capacity.

PEP of Proposed Signaling Scheme. Whilst the er-
godic capacity captures the performance achieved as the
number of independent fading intervals over which channel
coding is performed goes to infinity, the error probability
more accurately characterizes performance in practical sys-
tems with coding over a finite number of fading intervals. In
particular, the error probability captures the so-called diver-
sity advantage of a code which is not revealed by the ergodic
capacity expression in (4).

Unfortunately, the exact probability of error is difficult
to calculate. We instead examine the performance through
the Chernoff upper bound on the PEP. This bound is a com-
mon tool for code design in diversity systems (e.g., see [8])
and can be used to upper bound the probability of symbol
error.

Let s denote the transmitted symbol vector. For a given
channel realization H, the probability that the receiver de-
cides erroneously in favor of the vector ŝ, assuming the
maximum likelihood (ML) receiver, is given by

P (s! ŝ jH) = Q

 r
Es

2No

d2
e

!
; (5)

where d2
e
= kHX (s � ŝ)k2. The average over all channel

realizations of the right-hand-side of (5) can now be upper
bounded as

P (s ! ŝ) �
1���IMtMr

+ Es

4No

IMr 
R
��� ;



where

R :=

T�1X
t=0

X�

te
�eTXT

t (6)

with e = s�ŝ and jAj denotes the determinant of the matrix
A.

The diversity order of the code is defined as

Mr min
e2E

rank

 
T�1X
t=0

X�

t
e� eT XT

t

!
(7)

where E is the set of all possible error vectors. From (7),
the diversity order is upper bounded by M r min (Mt; T )
motivating choice of T � Mt to maximize diversity gain.
The coding advantage is defined as the smallest product of
the nonzero eigenvalues of R in (6). The coding advantage
relates to the SNR improvement of the resulting code and
should be as large as possible for a given diversity order.
Larger T gives more degrees of freedom in the design but
typically increases decoding complexity.

3. CODES AND FRAMES

In this section, we formulate criteria for code design, i.e.,
criteria for selecting the matrix X . Denote an (Mt; Mr;

T; N; C) code as one designed for an Mr �Mt channel,
using block length T , transmitting N symbols taken from
constellation C (e.g., 4QAM). Define the multiplexing order
of such a code as min(MtT; MrT; N)=T . The multiplex-
ing order describes the effective number of modes used per
symbol time.

Proposed Code Design Criteria. A closed form ex-
pression for the optimumX in (4) for the general case seems
difficult to obtain. Therefore, we optimize instead an upper
bound on the capacity. Application of Jensen’s inequality
[13] to (4) yields

C � maxtr(XH
X)=T

1

T
log det

�
IN +

Es

No
Mr X

HX

�
(8)

which is maximized by XHX = T=N IN for N � MtT .
Unfortunately, while (8) gives insight into capacity maxi-
mization, it does not guarantee good performance in terms
of error probability. Examples are provided in the simula-
tions section. Since the upper bound on the PEP is a good
predictor of code performance at high SNR we incorporate
this to propose the following design criterion.

Design Criterion. For (Mt;Mr; T;N; C), max-
imize the diversity order (7), and then the cod-
ing advantage, subject to X HX = T=N IN .

Coefficients of these matrices can be found through non-
linear optimization or through random search techniques.
Details are provided in [14].

Relation with Frame Theory. Design of appropriate
codes is simplified by recognizing that X HX= T=N IN
is achieved by any appropriately scaled tight frame for N -
dimensional space with redundancyMtT=N [10]. Here, the
rows of X constitute the frame elements. The connection
with frame theory gives the interpretation that we transmit
the coefficients of the frame expansion, given by X s as op-
posed to the symbols themselves.

Any tight frameX achieves the upper bound on capacity
(8). For example, if fXtg

T�1

t=0
are all tight frames (requires

N � Mt) with frame bound 1=N , then X is a tight frame
with frame bound T=N . We emphasize, however, that even
though all tight frames perform more or less equally well
from an ergodic capacity point of view, there can be signifi-
cant differences in their error rate performance.

It is interesting to observe that in some cases tight frames
achieve the exact capacity.

Lemma 1 For N = MtT , tight frames achieve capacity.
Proof: In this case, XXH = T=NIMtT , thus the capacity
in (4) becomes C = EHflog det(IMr

+ Es=No HH
H)g,

the capacity of the Mr �Mt channel [3, 15].

Note that in this case the redundancy equals 1 and hence the
tight frame is an orthogonal system. Unfortunately, diver-
sity advantage is lost no matter how many transmit antennas
are used, due to the lack of additional degrees of freedom.

In addition to interpretation, frame theory provides a
rich area to design code matrices. For instance, given any
random matrix X̂, a frame can be constructed from an ap-
propriately scaled X̂(X̂HX̂)�1=2. In frame-theoretic lan-
guage this amounts to constructing a tight frame from a
given nontight frame. Therefore, one procedure for design-
ing codes which perform well both from an ergodic capacity
point of view and from an error probability point of view, is
to randomly select an X̂, compute the corresponding tight
frame, evaluate the PEP rank criterion and proceed until a
sufficiently good code is found. We simulate codes found
using this method in the sequel. Other techniques relying
on optimization are explored in [14].

4. SIMULATIONS

In this section, we provide performance analysis of some
example codes. We consider two designs for a (3; 2; 2; 4;
4QAM) code based on the random search technique. Let
X � Y denote a system with X transmit antennas and Y
receive antennas. We illustrate performance of a code with
good PEP performance, one with bad PEP performance, un-
coded 2 � 2 spatial multiplexing, and the Alamouti 2 � 2
block code [9] (with 16QAM ). The receiver implements
ML decoding with perfect channel knowledge. In Fig. 1 we
plot the ergodic capacity of a 3 � 2 system and compare
with the equivalent system induced by the proposed codes.
We see that all the proposed codes have similar performance
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Fig. 1. Comparison of 3 � 2 ergodic capacity with that in-
duced by two different (3; 2; 2; 4; 4QAM) codes.

in terms of ergodic capacity. The difference with uncoded
3� 2 capacity and similarity to the 2� 2 capacity is due to
the fact that N < TMt.

Alternatively, in Fig. 2 we estimate the symbol error
probability of the proposed codes via 750 Monte Carlo sim-
ulations of bursts with 100 symbols per burst. First, note
that use of T = 2 enables us to capture additional diversity
advantage (of order four) from the third transmit antenna
which is not available to the 2� 2 spatial multiplexing sys-
tem (which achieves diversity advantage of order two). Sec-
ond, observe that without PEP optimization, codes that per-
form well from an ergodic capacity point of view may be
found which do not give full diversity advantage. Thus PEP
based optimization can dramatically improve code perfor-
mance in practical systems. We explore this point further in
[14].

5. CONCLUSIONS

For the linear matrix-modulation framework proposed in
[1, 2], we derived a code design criterion motivated by both
the ergodic capacity and the probability of error. We estab-
lished a relation between the new class of codes and tight
frames, and used results from frame theory to design codes.
MIMO space-time codes designed according to our crite-
rion perform well both from an ergodic capacity point of
view and from an error probability point of view. This is im-
portant because, as was illustrated, two code designs which
are equivalent in terms of ergodic capacity may have signif-
icantly different error rate performance.
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