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ABSTRACT

This paper presents the performance results of a recently
developed minimal radial basis function neural network
referred to as Minimal Resource Allocation Network
(MRAN) for equalization of a highly nonlinear magnetic
recording data storage channel. Using a realistic magnetic
channel model, MRAN equalizer’s performance has been
studied in the presence of channel impairments like partial
erasure, additive white gaussian noise and jitter and width
variance. Compared with the earlier neural equalizers,
MRAN equalizer has better performance in terms of
higher Signal to Distortion Ratios (SDR).

1. INTRODUCTION

Channel equalization problems are of great concern in
recent years for obtaining high-speed data transfer in
communication system and also for getting high-density
data storage in magnetic recording system. The adverse
effects of the dispersive channel causing inter-symbol
interference (ISI), the non-linearities introduced by the
modulation/demodulation process or non-ideal channel
nature and the noise generated in the system are to be
suitably  compensated. While communicators are
concerned with maximizing the rate (in bits per second)
whereby digital information can be transmitted and
reliably received, storage researchers are largely
concerned with maximizing the density for storing and
reliably retrieving information. Since there is general
similarity of the disk read and write processes to data-
detection and  transmission in  communication,
sophisticated equalization techniques that have been
widely employed in communication applications are now
being adapted [1,2].

Neural network-based equalizers for magnetic
recording channels have recently been addressed in [3,4].
Nair and Moon [3] have proposed a nonlinear equalizer
using a theoretically derived neural network and have
shown that it performs better than linear methods in terms
of Signal to Distortion Ratios (SDR) for highly nonlinear
channels when the channel model is known accurately.
They have also shown in [3] that their theoretical method
produces an equalizer performance close to that of a
trained backpropagation (BP) neural network equalizer
but without the need for training as the weights are
obtained based on their theory. Further in their method,
the number of hidden layers and the number of hidden

neurons are worked out as part of the theoretical
calculation unlike a BP network where these have to be
selected using a trial and error process. So whenever the
channel model is known accurately Nair and Moon have
shown that their theoretically designed neural equalizer is
to be preferred to linear or other neural network based
equalizers.

Recently a minimal Radial basis Function network
referred to as a minimal resource allocation network
(MRAN) has been developed [5] and successfully used
for communication channel equalization [6]. MRAN has
the same structure as a RBF but has the ability to add and
prune hidden neurons based on the training data so as to
produce a compact structure. In this paper we have
compared the performance of MRAN with that of Nair
and Moon equalizer for the same problem used in [3].
Simulation results show that MRAN is able to produce
better SDR for all cases of the problem considered in [3];
namely severe partial erasure, jitter, width variation and
additive white Gaussian noise. Further MRAN does not
require an accurate model of the channel, as is the case
with the Nair and Moon equalizer.

This paper is organized as follows. In section 2, the
nonlinear magnetic recording channel model along with
the equalizer is described. A brief description of the
MRAN network and its form as an equalizer is given in
section 3. In section 4, the application of MRAN for
realistic nonlinear magnetic channel equalization is
presented and its performance is compared with that of
Nair’s theoretical MSDR method [3]. Section 5
summarizes the conclusion from this study.

2. NONLINEAR MAGNETIC STORAGE CHANNEL
EQUALIZATION

In this paper, we compare the performance of the MRAN
equalizer with those of Nair’s nonlinear equalizer for the
same problem given in [3]. This problem uses a realistic
channel model that has the popular Lorenzian transition
response in the presence of AWGN, transition noise and
partial erasure. The channel model along with the
equalizer is shown in figure 1. The binary data sequence
to be stored in the recording disk is denoted by by which
takes values of -1 and + 1. The data is stored in tiny
magnetized regions called bit cells arranged along the
track. At read-back, the signal gets differentiated and
corrupted by noise and nonlinear distortions. A magnetic
flux transition occurs when the polarity of the bit cells



changes. Let the transitions’ sequence be defined as a',
which is equal to by-by;. Note that a'y takes values from
the set {-2, 0, +2} with alternating polarities for the
nonzero transitions. At high recording densities, the size
of bit regions decreases. The net result is that written bit
regions are partially erased. According to [3], this
nonlinear distortion phenomenon can be modeled as pair
wise erasure of the amplitude of the adjacent magnetic
transition,
a= (1-X)ak

where x denotes the partial erasure parameter. Since
partial erasure can only occur for minimum-width bit
regions, a transition with no neighboring transitions a bit
cell away is always intact. Therefore, a magnetic
transition undergoes partial erasure in all cases except
when it is the last one in a cluster of an odd number of
consecutive transitions.  Out of these, the amplitudes of
erased transitions a, can have values from the set {-2,
-2(1-x), 0, 2(1-x), and 2}. Besides these errors, there is
noise arising from the receiving amplifier and filter, which
is usually modeled as additive white Gaussian (AWGN).
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Fig. 1 Nonlinear Magnetic channel model with equalizer
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An isolated magnetic flux transition induces a voltage
pulse in the read head, which is often modeled by a
Lorenzian pulse shape, h (t, w) as

1

h(t,w)= ————

(t,w) Wi
W

1

Where t is the time and w is the width parameter. Due to
noise originating from the recording medium around the
magnetic transitions, the width, the amplitude, and the
position of the transition response pulses vary randomly.
If h (t, w) denotes the read-back response to a noise free
transition at t=0, the noisy read-back response can be
written as
z(Y)=X a, h(t-KT- Aty , w+Awy) + n(t)

At, and Aw, are random parameters representing
deviations in the position and width, respectively, from
the nominal values. The former represents magnetic
transition “jitter” and the latter “width variation” and they
are data-dependent noises. In this study, the quantities of
At, and Awy are modeled as independent and identically
distributed Gaussian random variables. The last term, n (t)
is the additive white Gaussian noise (AWGN).

Assuming a front-end filter matched to h (t, w) and a
symbol-rate sampler, the read-back sequences can be
expressed using the following equation, [3] where hy is the
sampled auto-correlation function of h(t, w); h' and h",
are sampled derivatives of h(t, w) with respect to t and w
respectively.

L
Z, = Z (ha,; + (h{At,_; +h"Aw,_)a, ;) +n,
i=-L
Thus, the aim of the equalizer is to classify the read and
corrupted data sequence into the three classes of {-2, 0,
+2} based on the magnetic transition sequence of a'y

Nair and Moon’s MSDR equalizer method [3]
assumes that the noisy observation vectors form clusters
in the Euclidean space whose centers mark the average of
the received vectors in the clusters. The structure of the
MSDR equalizer is as follows: considering a neural
network where its first layer is elements of the observation
vector, the second layer is made up of an array of linear
classifiers. Each one of these can determine which cluster
the received vector Z is closer to, in a given pair of
clusters. By performing an "AND" operation on the
classification results of the second layer, the third layer
defines convex regions around the cluster centers. In other
words, convex regions are approximated by an
intersection of several half-spaces of piece-wise linear
hyper-planes. The "OR" operations are done at the fourth
layer combining one or more convex regions to form the
class membership sets. After the structure is decided, from
the knowledge of the channel characteristics and various
noise power, the connection weights can be optimally
designed by maximizing the signal to distortion ratio
(SDR) at the piecewise linear classification boundaries.

In this paper, the signal to distortion ratio is defined
as follows: first find the mean signal at the equalizer
output for transitions of 0, — and + polarities. Let mean of
the equalized signal corresponding to a'x=+2 be r, and -r,
respectively. Therefore, the signal to distortion ratio
(SDR) is expressed as:

SDR1=r%/ 4¢?
SDR2=r%,/ 4¢”
SDR =min ( SDR1,SDR2)
e’ = E{e®3=E{( yi- d )’}
where the error sequence ey is defined as the difference
between di , the desired undistorted channel output, and
Yk , the actual equalizer output. The higher the SDR, the
lower the probability of error for practical distortion
distributions.

Before presenting the performance comparison of the
MSDR and MRAN equalizers, a brief description of
MRAN is given in the next section.

3. MINIMAL RESOURCE ALLOCATION
NETWORK (MRAN)

MRAN is a sequential learning algorithm for minimum
RBF neural network, recently developed by Yingwei et al
[5], which combines the growth criteria of an RAN with a
pruning strategy to realize a minimal RAN. The centers,
widths and weights of the hidden neurons are adjusted
using an extended Kalman filter (EKF). Here, only a brief
description of the network is given. For details please
refer to [5][6].

The output of an MRAN equalizer has the following
form:

h
f(x,)=a,+ z a ¢ (x,)
k=1



Where @ (x,) is the response of the k™-hidden neuron to
the input x, and oy is the weight connecting the k"-
hidden unit to the output unit. a, is the bias term and h
represents the number of hidden neurons in the network.
@(X,) is a Gaussian function given by,

o, (x,) = exp( - ———1 x, - u, %)

Where  is the center and o is the width of the Gaussian
function. || || denotes the Euclidean norm. In the MRAN
algorithm, the network begins with no hidden units. As
each input-output training data (X,, Yn) is received, the
network is built up based on certain growth criteria. The
algorithm adds hidden units, as well as adjusts the existing
network parameters.

A brief outline of the various steps is given below:
1. Obtain an input x¢ and calculate the network output i

and the corresponding errors
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6 =Y.~ f(X) =4 D S

n rmsn i=n=(M -1 M

2. Create a new RBF center if the following conditions
are met:

(@) the error |le,||* exceeds a minimum threshold value
(emin)1

(b) the root mean squared error (ems,) Of the network
averaged over a window size ‘M’ has been above a
certain threshold value (emin1) for a series of past data,
and

(c) the new input is sufficiently far from the existing
centers ( ||Xe- Hn [|>€n)-

3. Perform pruning if a center’s normalized contribution
to the output for a certain number ‘Sw’ of consecutive
inputs is found to be below a threshold value.

4. Adjust the weights and widths of the existing RBF
centres by using the Extended Kalman Filter (EKF)
Algorithm.

5. Increment k and go to step 1.

The performance of MRAN equalizer has been
evaluated on a number of examples from communication
area in [6]. It is adapted to magnetic channel equalization
next.

4. PERFORMANCE OF MRAN EQUALIZER

In this section, the realistic recording channel model
discussed in Section 2 is used to evaluate the error
performance of MRAN equalizer and compare it with that
of Nair and Moon’s MSDR equalizer [3]. The impulse
response matrices for this channel considered are given by

(3]

h=[ 0.1480 0.7132 0.2574]'=[h. ho hy]"
h'=[ 0.2476/T 0.1356/T -0.3512/T]'=[h%y h'% h% ]'
h"=[ 0.2593/T -1.6230/T -0.0996/T ]' =[ h*., h% h".]"
and the read-back signals are given by the following
equation:

h, h',
Z,=la.: a akl]{ho}ﬂammm a, At a, At ]| h |+
h, h;
h
[aMAWk+1 a, Aw, ak_lAwH] hy' | +n,
hy

The observation vector z has a length of four [3]. Four
channel error conditions have been studied and they are
partial erasure in the channel, additive white Gaussian
noise (AWGN) in the channel, jittery channel conditions,
and width variation in the channel. They represent
different types of nonlinearities and distortions in the
stored signal.

Case 1: Partial Erasure

The effect of partial erasure variation on the detection
performance is first investigated. MRAN was used to train
2000 data bits with noise corrupted at ozn:0.004,
0%4=0.01T? 0%,=0.000625T%, X =0.4 The values of the
parameters used in MRAN were: €min=0.4, €min1=0.6,
€max=0.4, y =1, the size of the two sliding windows M and
Sw is 60, 50 respectively, pruning threshold 6=0.001. The
resulting MRAN network had 13 hidden units. Under the
same noise condition, the parameters for MSDR network
with a structure Of 4-72-15-3 is also obtained. 10° data bits
with partial erasure parameter x varying from 0-0.7 were
then used to test the performance of resulting MRAN and
MSDR network. Figure 2 shows the detection SDR result.
It is seen that when the partial erasure cannot be estimated
correctly, the performance of MSDR detector degrades a
lot. In the presence of severe partial erasure (x= 0.7),
MRAN equalizer has an advantage of about 6dB over the
neural network based on MSDR criterion.

Case 2: Additive White Gaussian Noise

For a channel corrupted entirely by additive white
Gaussian noise (AWGN), the partial erasure is set to zero.
The MRAN algorithm was used to train the neural
network with 2000 data samples at 15dB SNR using the
parameters as enin=0.5, emin1=0.5, the size of the sliding
window M is 80, pruning threshold 6=0.001. 18 centers
have been built up. The resulting network was tested with
10° test data for each SNR to obtain the SDR curve in
figure 3. It is observed that at low SNR the MRAN
network has a performance measure very close to that of
MSDR networks, while at high SNR the MRAN scheme
has more performance superiority. It is clear that the
performance of MRAN equalizer is indeed better than that
of MSDR.

Case 3: Jitter Variance

Let training be done under the condition —2*log(RMS
jitter/T) =1.4. The values of the parameters used in
MRAN were: enin=0.5, emin1=0.8, €max=0.4, y =1, the size
of the two sliding windows M and Sw is 80, pruning
threshold 6=0.001. After 2000 samples training, MRAN
ends up with 24 hidden neurons. The neural network
based on MSDR method is obtained under the exactly
same noise condition. Noisy data with varying jitter noise
variance are then used for testing the two resulting neural
networks. The detection SDR is plotted against channel
jitter noise intensity in figure 4. When channel signals are
severely distorted by the jitter distortion, MRAN equalizer
and MSDR neural network have similar performance. In
other cases, MRAN equalizer has clear performance
advantage. We see, the SDR curve of MSDR method is
limited on the upper side by the residual ISI, while the



nonlinear scheme wusing MRAN has performance
improvements of more than 4 dB over the MSDR network
at those points.

Case 4: Width Variance

For a channel corrupted entirely by width variation
noise, samples data with width variation noise 0%,=0.005
(which corresponds to —log o, / T? =2.3 ) are used for
training. The parameters of MRAN are set as: emi,=0.6,
emini=0.7, €max=1, &€max=0.4, the size of the two sliding
windows M and Sw is 80, pruning threshold &=0.01. In
order to compare the performance of the resulting MRAN
equalizer after about 2000 iterations with that of the
MSDR equalizer, a plot of the SDR for 10° test data of
varying width noise power is shown in figure 5. It is clear
that the performance of MRAN equalizer with 24 centers
gain far more SDR advantage over the Nair’s MSDR
neural network.

5. CONCLUSION

An evaluation of MRAN equalizer for a severe nonlinear
ISI and signal-dependent distortion in the digital magnetic
recording system has been carried out. Using a realistic
magnetic channel model and in the presence of data
dependent noise like jitter and width variations and also
partial erasure channels, MRAN’s performance in terms
of Signal to Distortion Ratio (SDR) has been compared to
that of MSDR equalizer designed by Nair and Moon [3].
The results show a higher signal to distortion ratio (SDR)
for MRAN compared to that of Nair and Moon’s
equalizer. Further, MRAN does not need an accurate
knowledge of the channel model and has the ability to
build it up from the input and output data, providing a
good way to do the equalization.
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