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ABSTRACT 

 
This paper presents the performance results of a recently 
developed minimal radial basis function neural network 
referred to as Minimal Resource Allocation Network 
(MRAN) for equalization of a highly nonlinear magnetic 
recording data storage channel. Using a realistic magnetic 
channel model, MRAN equalizer’s performance has been 
studied in the presence of channel impairments like partial 
erasure, additive white gaussian noise and jitter and width 
variance. Compared with the earlier neural equalizers, 
MRAN equalizer has better performance in terms of 
higher Signal to Distortion Ratios (SDR). 
 

1. INTRODUCTION 
 
Channel equalization problems are of great concern in 
recent years for obtaining high-speed data transfer in 
communication system and also for getting high-density 
data storage in magnetic recording system. The adverse 
effects of the dispersive channel causing inter-symbol 
interference (ISI), the non-linearities introduced by the 
modulation/demodulation process or non-ideal channel 
nature and the noise generated in the system are to be 
suitably compensated. While communicators are 
concerned with maximizing the rate (in bits per second) 
whereby digital information can be transmitted and 
reliably received, storage researchers are largely 
concerned with maximizing the density for storing and 
reliably retrieving information. Since there is general 
similarity of the disk read and write processes to data-
detection and transmission in communication, 
sophisticated equalization techniques that have been 
widely employed in communication applications are now 
being adapted [1,2].  

Neural network-based equalizers for magnetic 
recording channels have recently been addressed in [3,4]. 
Nair and Moon [3] have proposed a nonlinear equalizer 
using a theoretically derived neural network and have 
shown that it performs better than linear methods in terms 
of Signal to Distortion Ratios (SDR) for highly nonlinear 
channels when the channel model is known accurately.  
They have also shown in [3] that their theoretical method 
produces an equalizer performance close to that of a 
trained backpropagation (BP) neural network equalizer 
but without the need for training as the weights are 
obtained based on their theory. Further in their method, 
the number of hidden layers and the number of hidden 

neurons are worked out as part of the theoretical 
calculation unlike a BP network where these have to be 
selected using a trial and error process.  So whenever the 
channel model is known accurately Nair and Moon have 
shown that their theoretically designed neural equalizer is 
to be preferred to linear or other neural network based 
equalizers.    

Recently a minimal Radial basis Function network 
referred to as a minimal resource allocation network 
(MRAN) has been developed [5] and successfully used 
for communication channel equalization [6]. MRAN has 
the same structure as a RBF but has the ability to add and 
prune hidden neurons based on the training data so as to 
produce a compact structure. In this paper we have 
compared the performance of MRAN with that of Nair 
and Moon equalizer for the same problem used in [3].  
Simulation results show that MRAN is able to produce 
better SDR for all cases of the problem considered in [3]; 
namely severe partial erasure, jitter, width variation and 
additive white Gaussian noise. Further MRAN does not 
require an accurate model of the channel, as is the case 
with the Nair and Moon equalizer. 

This paper is organized as follows. In section 2, the 
nonlinear magnetic recording channel model along with 
the equalizer is described. A brief description of the 
MRAN network and its form as an equalizer is given in 
section 3. In section 4, the application of MRAN for 
realistic nonlinear magnetic channel equalization is 
presented and its performance is compared with that of 
Nair’s theoretical MSDR method [3]. Section 5 
summarizes the conclusion from this study. 
 
2. NONLINEAR MAGNETIC STORAGE CHANNEL 

EQUALIZATION 
 
In this paper, we compare the performance of the MRAN 
equalizer with those of Nair’s nonlinear equalizer for the 
same problem given in  [3]. This problem uses a realistic 
channel model that has the popular Lorenzian transition 
response in the presence of AWGN, transition noise and 
partial erasure. The channel model along with the 
equalizer is shown in figure 1. The binary data sequence 
to be stored in the recording disk is denoted by bk, which 
takes values of  -1 and + 1. The data is stored in tiny 
magnetized regions called bit cells arranged along the 
track. At read-back, the signal gets differentiated and 
corrupted by noise and nonlinear distortions. A magnetic 
flux transition occurs when the polarity of the bit cells 



 
 

changes. Let the transitions’ sequence be defined as a'k, 
which is equal to bk-bk-1. Note that a'k takes values from 
the set {-2, 0, +2} with alternating polarities for the 
nonzero transitions. At high recording densities, the size 
of bit regions decreases. The net result is that written bit 
regions are partially erased. According to [3], this 
nonlinear distortion phenomenon can be modeled as pair 
wise erasure of the amplitude of the adjacent magnetic 
transition, 

ak=  (1 - χ ) a'k. 
where χ denotes the partial erasure parameter. Since 
partial erasure can only occur for minimum-width bit 
regions, a transition with no neighboring transitions a bit 
cell away is always intact. Therefore, a magnetic 
transition undergoes partial erasure in all cases except 
when it is the last one in a cluster of an odd number of 
consecutive transitions.   Out of these, the amplitudes of 
erased   transitions   ak    can have values from the set  {-2, 
-2(1-χ), 0, 2(1-χ), and 2}.  Besides these errors, there is 
noise arising from the receiving amplifier and filter, which 
is usually modeled as additive white Gaussian (AWGN). 
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Fig. 1 Nonlinear Magnetic channel model with equalizer 
 

An isolated magnetic flux transition induces a voltage 
pulse in the read head, which is often modeled by a 
Lorenzian pulse shape, h (t, w) as  
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Where t is the time and w is the width parameter. Due to 
noise originating from the recording medium around the 
magnetic transitions, the width, the amplitude, and the 
position of the transition response pulses vary randomly. 
If h (t, w) denotes the read-back response to a noise free 
transition at t=0, the noisy read-back response can be 
written as 

z(t)=∑ ak h(t-kT- ∆tk , w+∆wk) + n(t) 
∆tk and ∆wk are random parameters representing 
deviations in the position and width, respectively, from 
the nominal values. The former represents magnetic 
transition “jitter” and the latter “width variation” and they 
are data-dependent noises. In this study, the quantities of 
∆tk and ∆wk are modeled as independent and identically 
distributed Gaussian random variables. The last term, n (t) 
is the additive white Gaussian noise (AWGN). 

Assuming a front-end filter matched to h (t, w) and a 
symbol-rate sampler, the read-back sequences can be 
expressed using the following equation, [3] where hk is the 
sampled auto-correlation function of h(t, w);  ht

k and hw
k 

are sampled derivatives of h(t, w) with respect to t and w 
respectively.  
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Thus, the aim of the equalizer is to classify the read and 
corrupted data sequence into the three classes of {-2, 0, 
+2} based on the magnetic transition sequence of a'k.  

Nair and Moon’s MSDR equalizer method [3] 
assumes that the noisy observation vectors form clusters 
in the Euclidean space whose centers mark the average of 
the received vectors in the clusters.  The structure of the 
MSDR equalizer is as follows: considering a neural 
network where its first layer is elements of the observation 
vector, the second layer is made up of an array of linear 
classifiers. Each one of these can determine which cluster 
the received vector Z is closer to, in a given pair of 
clusters. By performing an "AND" operation on the 
classification results of the second layer, the third layer 
defines convex regions around the cluster centers. In other 
words, convex regions are approximated by an 
intersection of several half-spaces of piece-wise linear 
hyper-planes. The "OR" operations are done at the fourth 
layer combining one or more convex regions to form the 
class membership sets. After the structure is decided, from 
the knowledge of the channel characteristics and various 
noise power, the connection weights can be optimally 
designed by maximizing the signal to distortion ratio 
(SDR) at the piecewise linear classification boundaries. 

In this paper, the signal to distortion ratio is defined 
as follows: first find the mean signal at the equalizer 
output for transitions of 0, – and + polarities. Let mean of 
the equalized signal corresponding to a'k=±2 be ra and -rb 
respectively. Therefore, the signal to distortion ratio 
(SDR) is expressed as: 

SDR1= r2
a / 4e2 

SDR2= r2
b / 4e2 

SDR = min ( SDR1,SDR2 ) 
e2 = E{e2

k}=E{( yk - dk )2} 

where the error sequence ek is defined as the difference 
between dk , the desired undistorted channel output, and  
yk , the actual equalizer output. The higher the SDR, the 
lower the probability of error for practical distortion 
distributions.  

Before presenting the performance comparison of the 
MSDR and MRAN equalizers, a brief description of 
MRAN is given in the next section. 

 
3. MINIMAL RESOURCE ALLOCATION 

NETWORK (MRAN) 
 
MRAN is a sequential learning algorithm for minimum 
RBF neural network, recently developed by Yingwei et al 
[5], which combines the growth criteria of an RAN with a 
pruning strategy to realize a minimal RAN. The centers, 
widths and weights of the hidden neurons are adjusted 
using an extended Kalman filter (EKF). Here, only a brief 
description of the network is given. For details please 
refer to [5][6]. 

The output of an MRAN equalizer has the following 
form: 
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Where φk (xn) is the response of the kth-hidden neuron to 
the input xn, and αk is the weight connecting the kth-
hidden unit to the output unit. α0 is the bias term and h 
represents the number of hidden neurons in the network. 
φk(xn) is a Gaussian function given by,  
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Where µµµµk is the center and σk is the width of the Gaussian 
function.  || || denotes the Euclidean norm. In the MRAN 
algorithm, the network begins with no hidden units. As 
each input-output training data (xn, yn) is received, the 
network is built up based on certain growth criteria. The 
algorithm adds hidden units, as well as adjusts the existing 
network parameters.  

A brief outline of the various steps is given below: 
1. Obtain an input xk and calculate the network output yk 

and the corresponding errors  
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2. Create a new RBF center if the following conditions 
are met: 

(a) the error ||en||2 exceeds a minimum threshold value 
(emin), 

(b) the root mean squared error (ermsn) of the network 
averaged over a window size ‘M’ has been  above a 
certain threshold value (emin1) for a series of past data, 
and 

(c) the new input is sufficiently far from the existing 
centers ( ||xk- µµµµn ||>εn). 

3. Perform pruning if a center’s normalized contribution 
to the output for a certain number ‘Sw’ of consecutive 
inputs is found to be below a threshold value. 

4.  Adjust the weights and widths of the existing RBF 
centres by using the Extended Kalman Filter (EKF) 
Algorithm. 

5. Increment k and go to step 1. 
The performance of MRAN equalizer has been 

evaluated on a number of examples from communication 
area in [6]. It is adapted to magnetic channel equalization 
next. 

 
4. PERFORMANCE OF MRAN  EQUALIZER  

 
In this section, the realistic recording channel model 
discussed in Section 2 is used to evaluate the error 
performance of MRAN equalizer and compare it with that 
of Nair and Moon’s MSDR equalizer [3]. The impulse 
response matrices for this channel considered are given by 
[3] 

h=[ 0.1480   0.7132   0.2574 ]' = [ h-1  h0  h1] ' 
ht =[ 0.2476/T  0.1356/T  -0.3512/T ] ' = [ ht

-1   ht
0   ht

1  ] ' 
hw =[ 0.2593/T  -1.6230/T  -0.0996/T ]' =[ hw

-1  hw
0  hw

1] ' 
and the  read-back signals are given by the following 
equation: 
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The observation vector z has a length of four [3].  Four 
channel error conditions have been studied and they are 
partial erasure in the channel, additive white Gaussian 
noise (AWGN) in the channel, jittery channel conditions, 
and width variation in the channel. They represent 
different types of nonlinearities and distortions in the 
stored signal.   
 

Case 1: Partial Erasure  
The effect of partial erasure variation on the detection 

performance is first investigated. MRAN was used to train 
2000 data bits with noise corrupted at σ2

n=0.004, 
σ2

t=0.01T2, σ2
w=0.000625T2, χ =0.4. The values of the 

parameters used in MRAN were: emin=0.4, emin1=0.6, 
εmax=0.4, γ =1, the size of the two sliding windows M and 
Sw is 60, 50 respectively, pruning threshold δ=0.001. The 
resulting MRAN network had 13 hidden units. Under the 
same noise condition, the parameters for MSDR network 
with a structure 0f 4-72-15-3 is also obtained. 105 data bits 
with partial erasure parameter χ varying from 0-0.7 were 
then used to test the performance of resulting MRAN and 
MSDR network. Figure 2 shows the detection SDR result. 
It is seen that when the partial erasure cannot be estimated 
correctly, the performance of MSDR detector degrades a 
lot. In the presence of severe partial erasure (χ= 0.7), 
MRAN equalizer has an advantage of about 6dB over the 
neural network based on MSDR criterion.  
 

Case 2: Additive White Gaussian Noise  
For a channel corrupted entirely by additive white 

Gaussian noise (AWGN), the partial erasure is set to zero. 
The MRAN algorithm was used to train the neural 
network with 2000 data samples at 15dB SNR using the 
parameters as emin=0.5, emin1=0.5, the size of the sliding 
window M is 80, pruning threshold δ=0.001. 18 centers 
have been built up. The resulting network was tested with 
105 test data for each SNR to obtain the SDR curve in 
figure 3. It is observed that at low SNR the MRAN 
network has a performance measure very close to that of 
MSDR networks, while at high SNR the MRAN scheme 
has more performance superiority. It is clear that the 
performance of MRAN equalizer is indeed better than that 
of MSDR.  
 

Case 3: Jitter Variance  
Let training be done under the condition –2*log(RMS 

jitter/T) =1.4. The values of the parameters used in 
MRAN were: emin=0.5, emin1=0.8, εmax=0.4, γ =1, the size 
of the two sliding windows M and Sw is 80, pruning 
threshold δ=0.001. After 2000 samples training, MRAN 
ends up with 24 hidden neurons. The neural network 
based on MSDR method is obtained under the exactly 
same noise condition. Noisy data with varying jitter noise 
variance are then used for testing the two resulting neural 
networks. The detection SDR is plotted against channel 
jitter noise intensity in figure 4. When channel signals are 
severely distorted by the jitter distortion, MRAN equalizer 
and MSDR neural network have similar performance. In 
other cases, MRAN equalizer has clear performance 
advantage. We see, the SDR curve of MSDR method is 
limited on the upper side by the residual ISI, while the 



 
 

nonlinear scheme using MRAN has performance 
improvements of more than 4 dB over the MSDR network 
at those points. 
 

Case 4: Width Variance 
For a channel corrupted entirely by width variation 

noise, samples data with width variation noise σ2
w=0.005 

(which corresponds to –log σ2
w / T2 =2.3 ) are used for 

training. The parameters of MRAN are set as: emin=0.6, 
emin1=0.7, εmax=1, εmax=0.4, the size of the two sliding 
windows M and Sw is 80, pruning threshold δ=0.01. In 
order to compare the performance of the resulting MRAN 
equalizer after about 2000 iterations with that of the 
MSDR equalizer, a plot of the SDR for 105 test data of 
varying width noise power is shown in figure 5. It is clear 
that the performance of MRAN equalizer with 24 centers 
gain far more SDR advantage over the Nair’s MSDR 
neural network.   
 

5. CONCLUSION 
 
An evaluation of MRAN equalizer for a severe nonlinear 
ISI and signal-dependent distortion in the digital magnetic 
recording system has been carried out. Using a realistic 
magnetic channel model and in the presence of data 
dependent noise like jitter and width variations and also 
partial erasure channels, MRAN’s performance in terms 
of Signal to Distortion Ratio (SDR) has been compared  to 
that of MSDR equalizer designed by Nair and Moon [3].  
The results show a higher signal to distortion ratio (SDR) 
for MRAN compared to that of Nair and Moon’s 
equalizer.  Further, MRAN does not need an accurate 
knowledge of the channel model and has the ability to 
build it up from the input and output data, providing a 
good way to do the equalization. 
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Fig.2. Channel with Partial erasure 

 
Fig. 3. Channel with AWGN 

 

 
Fig.4 Jitter dominant channel 

 
Fig.5. Width variation noise dominant channel 

 


