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ABSTRACT

We propose an algorithm to compute a modification of the
classical discrete Karhunen-Loeve Transform (KLT) useful
when some of the coefficients are randomly unavailable for
reconstruction. Such a scheme can provide Multiple De-
scription Coding (MDC) for signals and images transported
by lossy packet links. The modification of the KLT is based
on a “correlating” block that, from knowledge of the chan-
nel erasure statistics, is optimized with a gradient algorithm
to provide minimum average reconstruction error. A set of
simulations show appreciable improvements over standard
schemes.

1. TRANSFORM CODING WITH ERASURES
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Fig. 1. The coder-channel-decoder cascade

Consider anN -dimensional source emitting indepen-
dent random vectorsx. Transform coding is based on com-
putation and quantization of linear projections ofx. Figure
1 shows the coding-decoding cascade. The first block maps
theN -dimensional input vectorx onto theM -dimensional
subspace of theM first eigenvectors ofE[xxT ] (Princi-
pal components). The coefficients after such a transforma-
tion are known as the Discrete Karhunen-Loeve Transform
(KLT).

Suppose now that a KLT is to be used for coding real-
time signals or images to be sent in a lossy packet network

(such as IP). Typically, the transform coefficients are quan-
tized, loaded into packets and sent over the channel. At the
receiver some packets may not be available for recontruc-
tion due to network congestion or excessive delays. There-
fore the introduction of a protection mechanism may be ap-
propriate to ease the receiver operation in restoring the lost
pieces. A number of strategies have been proposed in the lit-
erature and they can be subdivided into two main categories:
a) redundancy coding with codes such as Reed-Solomon
or similar [1] (channel coding); b) source-channel trans-
form coding in which the source transform, together with
the compression task, has the role of robustifying the coef-
ficients against random losses [5][6]. In this paper we take
approach b) by proposing an algorithm for computing the
structure of anMxM linear blockA included before trans-
mission. The total transform matrix will be clearlyAQM . If
we ignore for now the other blocks of Figure 1 and suppose
that theM -dimensional vectorz = Ay is transmitted on
an erasure channel that at each channel use removes some
of its components, we would like to be able to designA to
minimize the degradation on the final reconstruction.

This framework fits well in a packet switching scenario
wherez is partitioned into coefficient subsets loaded into
separate packets and where erasures may happen packet-
wise. Such a strategy is related to what is becoming popular
in the signal processing literature as Multiple Description
Coding (MDC), since the various packets that code a frame
could be considered as different descriptions of the original
source (see [5] and [6] for more references).

Note that matrixA plays the critical role of “correlating”
the coefficients coming from the KLT block with the objec-
tive of providing better protection againt the effects of the
erasures on the reconstruction. Clearly in a real transmitter
the transform coefficients have to be quantized. To concen-
trate better on the role of matrixA, we start just considering
the transform blocks, delaying the inclusion of quantization
to a later section.

The general model that follows supposes that at each ob-
servation a number of components ofz may be unavailable
for reconstructingx, i.e. Ne (� M ) randomerasures have
happened. Describing the erasure process with the random



binary vectoreT = (e1; e2; :::; eM ), with ei = 0, if the i-th
component is erased andei = 1 otherwise, a compact de-
scription of the erasure process can be done by defining the
residual vectorze containing theN �Ne survivor compo-
nents kept in the same order. The operation can be described
via an(M �Ne)�M permutation matrixP (e):

ze = P (e)z:

The formulation is easily visualized with the help of the fol-
lowing example: considerM = 6 and an erasure event that
for a givenx cancels the second and the fourth components
of z. The vectorze is obtained as
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Note that the permutation matrixP has zeros in the
columns corresponding to the erasures and has the property
thatP (e)P T (e) = INe

andP T (e)P (e) = diag(e).
A first step in our investigation is devoted to establish

the performance of the communication chain when no cor-
relating blockA is included(A = IM ), i.e. when classical
transform coding is used.

Note that if some coefficients are erased by the chan-
nel, and the receiver knows which ones, it can build its best
mean square reconstruction ofx from e andze. Standard
Wiener filter theory [3], establishes that the best reconstruc-
tion is just obtained by using the surviving coefficients “re-
propagated” back into the projection matrixQM . This is
easily understood because the coefficientsfyig are uncor-
related. Therefore surviving coefficient cannot carry infor-
mation about other coefficients that have been erased. This
suggests immediately that a transform that protects the in-
formation against the erasures must be a “correlating” trans-
form.

As we discuss the inclusion of the matrix in the comu-
nication chain in the following, let us evalutate first the per-
formance of the KLT in the presence of erasures. The mean
squared error for each erasure is:

E(e) =

NX
i=M+1

�i +

MX
i=1

(1� ei)�i; (2)

that averaged over all possible erasure events gives:

E = Ee[E(e)] =

NX
i=M+1

�i +

MX
i=1

(1�E[ei])�i = Ec + Ee;

(3)

where�i are the eigenvalues ofRx, Ec is the distortion due
to compression andEe the distortion due to the erasures.

2. THE CORRELATING BLOCK

The question we are addressing now is: can we improve the
average reconstruction error, if we know something about
the erasure process? In other words, if the erasure process
can be statistically characterized, can we find a matrixA

that leads to better reconstructions? The answer is affirma-
tive as the “correlating” matrix increases the number of de-
grees of freedom in the design of the coder and could be
considered a sort of “pre-emphasis” filter bank. The idea
was proposed in [5] and [6] where it has been suggested
that we build the matrix with a sequence of “lifting steps.”
The receiver block in Figure 1, at each realization(x; e),
knows which erasures have happened, and gives its best
mean square error [3] reconstruction as:

xr = CT
r (e)ze; (4)

with ze = P (e)z, andCr(e) = E[zez
T
e ]

�1E[zex
T ], or

Cr(e) = (PATQT
MRxQMAP T )�1PATQT

MRx

= (PAT�MAP T )�1PAT�MQM ; (5)

where�M = diag(�1; :::; �M ) and we have omitted the
argument ofP for simplicity of notation. The distortion
due to a specific erasure is:

Ee(e) =

MX
i=1

�i (6)

�tr[RxQMAP T (PAT�MAP T )�1PATQT
MRx]:

Using the propertytr[AB] = tr[BA], the expression can
be re-written as:

Ee(e) = �2c � tr[PAT�2
MAP T (PAT�MAP T )�1]: (7)

Clearly if P = IM (no losses), the second term becomes
tr[�M ] independently ofA. Also if A were a diagonal ma-
trix, there would be no difference with respect to the KLT.

The problem of non trivial optimal choice forA is then
formulated as:
�

Ao = argmaxA C

C = Ee[tr[PA
T�2

MAP T (PAT�MAP )�1]]:
(8)

Note that the performance measure depends only on the
eigenvalues and the statistics of the erasure process. We
have computed the gradient ofC with respect toA using
techniques from matrix differential calculus [4]:

8<
:

rAC = 2Ee[�
2
MAP TB�1

1 P � �MAB�1

1 B2B
�1

1 P T ]
B1 = PAT�MAP T

B2 = PAT�2
MAP T

(9)



For space reasons the details of the computation cannot
be reported here, but will be included in a larger paper. They
are in any case available on request (use our e-mail address
indicated in the title). A search for the optimal matrixA can
be done with a gradient ascent algorithm as�A = �rAC.
It appears hard to infer in general from the structure of the
cost function what is the theoretical lower limit for the re-
costruction error. However we have found experimentally
that in all cases our gradient searches give solutions forA

that largely improve over the standard KLT scheme. Cur-
rent investigation is devoted to the inclusion of appropriate
constraints onA.

Note that the gradient expression requires evaluation of
the average over all the possible erasure events and we need
to know or estimate the probability of each configuration.
This may be exponentially complex if the number of con-
figurations is large. In our applications, however, it is likely
that the coefficient setz are to be divided into a small num-
ber of subgroups (packets, in our experiments only three),
that can exhibit a manageable number of loss configura-
tions.
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Fig. 2. Computed theoretical gain on the KLT (no quant.)

A simulation without quantization: We have performed
a large number of simulations on synthetic and natural sig-
nals finding very consistent results [2]. We report here the
case of transform coding of a Markov sequence with auto-
correlationr(i) = �jij. This is a good test for our system
because this model may approximate rather well the auto-
correlation structure of signals of practical interest such as
image blocks and some speech segments. In this experiment
the projections are supposed to be sent on the lossy channel
without quantization. The window size isN = 160 and
onlyM = 90 components are kept after KLT. The values of
� range from 0.7 to 0.9 which in the absence of losses cor-
respond to a compression mean square errorE c that ranges
from about -10dB to -16 dB, respectively. The coefficients
are partitioned into three groups of dimension 30 and inde-
pendent Bernoulli loss of packets with various loss proba-
bilities p are simulated for the channel. We have computed

the average mean square error after losses when the KLT
coefficients are grouped in three packets. It is easy to see
that the grouping for the KLT is irrelevant since losses are
independent and the coefficients uncorrelated. This distor-
sion has been compared to the distorsion obtained after the
inclusion of the correlating matrixA. Matrix A is com-
puted with the gradient ascent algorithm from knowledge
of the eigenvalue set and the loss probability. The gain is
shown in Figure 2 with the highest improvement, about 5
dB, obtained when the process is highly correlated� = 0:9
and the loss probability is about 0.25. However, as it can
be seen from the figure, the improvement is appreciable in
most practical cases.

3. THE TRANSFORM WITH QUANTIZATION

The next obvious step in this investigation is to establish
if the introduction of the correlating matrix A leads to im-
provements also when scalar quantization on the coefficients
is included.

In the standard KLT scheme if scalar quantization is suf-
ficiently fine to be modeled as additive independent gaus-
sian noise the total reconstruction mean square error at the
receiver can be estimated to be [1]:
E = �2t + (p � 1)

PM
i=1 �i + (1 � p)Eq = Ec + Ee + Eq,

whereEq = M � C � 2�2R(
QM�1

i=0 �i)
1=M , with R = N

b

M
,

Nb = number of bits used by the quantizer, C a constant
and Bernoulli losses with loss probabilityp. The quantizer
is the optimal gaussian quantizer for each coefficient based
on the knowledge of the relative variance (eigenvalue) [1].

The quasi-optimal performance of the scalar quantizer is
to attribute to the fact that the coefficients are uncorrelated.
Therefore in our modified scheme, when a correlating block
A is introduced, a loss of performance may happen if we
perform scalar quantization on the coefficients as they are
[5][6]. Therefore, we introduce within each partition subset
a decorrelating linear blockDi as shown Figure 1. In this
way in each set we have coefficients that are globally corre-
lated to the others, but uncorrelated among themselves. By
stretching the assumption on the additive independent noise
model on each coefficient in this modified scheme, we can
re-work the calculation done above withxr = CT

r (e; �)ze,
ze = P (z0 + �) andz0 = DATQT

Mx, where we have in-
cluded in the vector� the independent additive noise com-
ponents, and in the block-diagonal matrixD the decorrelat-
ing blocks. Using Wiener filter theory, the best recostruc-
tion matrix, which depends also on the autocorrelationR �,
is Cr(e) = E[zez

T
e ]

�1E[zex
T ]; with mean square error:

E(e) = �2t � tr

�
E[xzTe ]E[zez

T
e ]

�1E[zex
T ]

�
. The ex-

pectation is computed over all the possible erasure eventse

and the quantization process�. By using steps similar to the



ones used for the unquantized case we have:

E(e) = �2t � tr[PDTAT�2
MADP T

(PDTAT�MADP T + PR�P
T )�1]: (10)

The problem of non trivial optimal choice forA is formu-
lated as:8<
:

Ao = argmaxA C

C = Ee;�tr[PD
TAT�2

MADP T

(PDTAT�MADP T + PR�P
T )�1]:

(11)

The gradient ofC with respect toA is:8>><
>>:

rA(:) = 2Ee;�

�
�2
MADP TB�1

1 PDT�

��MADP TB�1

1 B2B
�1

1 PDT
�
;

B1 = PDTAT�MADP T + PR�P
T

B2 = PDTAT�2
MADP T

(12)

A search for the optimal matrixA can be done, like in the
analysis without quantization, with a gradient ascent algo-
rithm. Unfortunately, the cost function includes the quan-
tization error autocorrelation matrix, which in turn depends
onA and on how the scalar quantizers and the decorrelating
blocks inD are designed.

Therefore, we adopt the following computing strategy:
1) divide theM coefficients into packets; 2) compute the
best matrixA without quantization; 3) compute the decor-
relating blocks inD using spectral decomposition; 4) cali-
brate a gaussian compander for each coefficient on the basis
of the estimated variances; 6) distribute the total number of
bitsNb among all the coefficients using an optimal bit al-
location algorithm [1]; 7) estimate the quantization noise
autocorrelation matrixR� ; 8) repeat the gradient algorithm
using alsoR� to find a new matrix A; iterate.

The computational complexity of such an algorithm can
be considerable if we estimate the autocorrelation matrix
R� at each gradient iteration. However, various heuristics
can be used to speed up the computation such as maintain-
ing the same estimation forR� if the average error has not
varied too much, or performing similar strategies.

Figure 3 shows the theoretical improvement of the new
method over the KLT for the Markov sequence model when
� = :84. The same optimal bit allocations are used for both
schemes. These results, which are consistent with many
others obtained on synthetic and natural signals [2], show
that the solution remains quite robust with respect to quan-
tization. We find that when at least 2-3 bits in the average
are assigned to each coefficient, there is very little difference
in performance with respect to the unquantized case.

As a verification, we have also repeated the simulation
of Fig. 3 by generating a Markov sequence and applying to
it the optimal coders and decoders at various loss probabil-
ities. Figure 4 shows the results for� = 0:84. The curve is
very close to the expected theoretical result. This is also in
strong support of the assumptions that have been necessary
to model quantization.
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Fig. 3. Computed theoretical gain over KLT (quantization
included,� = 0:84)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

640; 720 →
560 →

480

400

320

parameter=Nb

p
ga

in
 (

dB
)

Fig. 4. Simulated gain over KLT (quantization included,
� = 0:84)
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