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ABSTRACT (such as IP). Typically, the transform coefficients are quan-

laorith dificati fth tized, loaded into packets and sent over the channel. At the
We propose an algorithm to compute a modification of the o .oiver some packets may not be available for recontruc-

classical discrete Karhgn_en—Loeve Transform (KLT) useful tion due to network congestion or excessive delays. There-
when some of the coefficients are randoml_y unaval!able for fore the introduction of a protection mechanism may be ap-

reco n'structlon. Such a schgme can p.rowde Multiple De- propriate to ease the receiver operation in restoring the lost
scription Coding .(MDC) for S'gn"flls a_md images trapsported pieces. A number of strategies have been proposed in the lit-
by lossy packet links. The modification of the KLT is based erature and they can be subdivided into two main categories:

onla “correlatmg” _bloc_k that_, f_rorr:j kr!or:/vledg((aj_of thel Chfi?]' a) redundancy coding with codes such as Reed-Solomon
nel erasure statistics, is optimized with a gradient algorithm . ciriiar [1] (channel coding): b) source-channel trans-

t(,) provi_de minimum average reponstruction error. A set of form coding in which the source transform, together with
simulations show appreciable improvements over standardthe compression task, has the role of robustifying the coef-

schemes. ficients against random losses [5][6]. In this paper we take
approach b) by proposing an algorithm for computing the
1. TRANSEFORM CODING WITH ERASURES structure of anl/xM linear blockA included before trans-
mission. The total transform matrix will be cleath@ »;. If
we ignore for now the other blocks of Figure 1 and suppose
that the M -dimensional vectoz = Ay is transmitted on
an erasure channel that at each channel use removes some

of its components, we would like to be able to desigto
»‘&i—» minimize the degradation on the final reconstruction.
This framework fits well in a packet switching scenario
- Qu— A Cy Lo wherez is partitioned into coefficient subsets loaded into
separate packets and where erasures may happen packet-
1 Ds wise. Such a strategy is related to what is becoming popular
in the signal processing literature as Multiple Description
Tx Channel ReC

Coding (MDC), since the various packets that code a frame
could be considered as different descriptions of the original
Fig. 1. The coder-channel-decoder cascade source (see [5] and [6] for more references).
Note that matrix4 plays the critical role of “correlating”

Consider anN-dimensional source emitting indepen- the coefficients coming from the KLT block with the objec-
dent random vectors. Transform coding is based on com- tive of providing better protection againt the effects of the
putation and quantization of linear projectionsxofFigure erasures on the reconstruction. Clearly in a real transmitter
1 shows the coding-decoding cascade. The first block mapsthe transform coefficients have to be quantized. To concen-
the V-dimensional input vectat onto the)M -dimensional trate better on the role of matrix, we start just considering
subspace of thé/ first eigenvectors ofz[xx”] (Princi- the transform blocks, delaying the inclusion of quantization
pal components). The coefficients after such a transforma-to a later section.
tion are known as the Discrete Karhunen-Loeve Transform  The general model that follows supposes that at each ob-
(KLT). servation a number of componentszafnay be unavailable

Suppose now that a KLT is to be used for coding real- for reconstructing, i.e. N. (< M) randomerasures have
time signals or images to be sent in a lossy packet networkhappened. Describing the erasure process with the random



binary vectore” = (ey, es, ..., ear), With e; = 0, if the i-th 2. THE CORRELATING BLOCK

component is erased alrg = 1 otherwise, a compact de-

scription of the erasure process can be done by defining theThe question we are addressing now is: can we improve the

residual vector,. containing theV — N, survivor compo- average reconstruction error, if we know something about

nents kept in the same order. The operation can be describedhe erasure process? In other words, if the erasure process

viaan(M — N,) x M permutation matrixP(e): can be statistically characterized, can we find a matrix
that leads to better reconstructions? The answer is affirma-

ze = P(e)z. tive as the “correlating” matrix increases the number of de-

The formulation is easily visualized with the help of the fol-  grees of freedom in the design of the coder and could be

lowing example: considel/ = 6 and an erasure event that considered a sort of “pre-emphasis” filter bank. The idea

for a givenx cancels the second and the fourth components Was proposed in [5] and [6] where it has been suggested

of z. The vector, is obtained as that we build the matrix with a sequence of “lifting steps.”
The receiver block in Figure 1, at each realizatione),
1 knows which erasures have happened, and gives its best
el 100000 %2 mean square error [3] reconstruction as:
Ze2 | |0 0 1 0 0 O 23 (1)
Ze3 0 00 010 7 X, = Cg(e)ze, 4)
Ze4 0 0 0 0 0 1 25
26 with z, = P(e)z, andC,.(e) = E|z.z!] ' E[z.x'], or

Note that the permutation matri® has zeros in the . T AT TN—1 1 AT AT
columns corresponding to the erasures and has the property Crle) = (PATQMR””gMAP )T PATQy Re
that P(e)PT (e) = In, andPT (e)P(e) = diag(e). = (PATAMAPT)'PATANQu, ()

A first step in our investigation is devoted to establish
the performance of the communication chain when no cor-
relating blockA is included(A = I,,), i.e. when classical
transform coding is used.

Note that if some coefficients are erased by the chan-

whereAy, = diag(Aq,...,Ap) and we have omitted the
argument ofP for simplicity of notation. The distortion
due to a specific erasure is:

nel, and the receiver knows which ones, it can build its best E.(e) = Z i (6)

mean square reconstructionoffrom e andz.. Standard —

Wiener filter theory [3], establishes that the best reconstruc- tr[R QuAPT(PAT Ay APT) ' PATQT R ]
- x MLvx |-

tion is just obtained by using the surviving coefficients “re-

propagated” back into the prOJect|on_ mat@M. This is Using the propertyr[AB] = tr[BA], the expression can

easily understood because the coefficiggts: are uncor-  pa re-written as:

related. Therefore surviving coefficient cannot carry infor-

mation about other coefficients that have been erased. This Eo(e) =02 —tr[PATA2, APT(PATA APT) Y. (7)

suggests immediately that a transform that protects the in-

formation against the erasures must be a “correlating” trans-Clearly if P = I, (no losses), the second term becomes

form. tr[Aar] independently ofd. Also if A were a diagonal ma-
As we discuss the inclusion of the matrix in the comu- trix, there would be no difference with respect to the KLT.

nication chain in the following, let us evalutate first the per- The problem of non trivial optimal choice fot is then

formance of the KLT in the presence of erasures. The meanformulated as:

squared error for each erasure is:

{ 2o = arg gt C2 T(pAT 1 (8)

Z A +Z 1= e, @ C = Eo[tr[PA" A3 ;AP (PA" A AP)]].

=M+1 Note that the performance measure depends only on the
that averaged over all possible erasure events gives: eigenvalues and the statistics of the erasure process. We
have computed the gradient 6fwith respect toA using
c— Z A+ Z 1= Ble)\s = & + &, technigues from matrix differential calculus [4]:
=M 3 VaC = 2E A2, APTB{'P — Ay AB; ' By By PT]
(3) By = PATAy APT
where); are the eigenvalues @t,, &, is the distortion due By = PATAZ, APT

to compression andl, the distortion due to the erasures. 9)



For space reasons the details of the computation cannothe average mean square error after losses when the KLT
be reported here, but will be included in a larger paper. They coefficients are grouped in three packets. It is easy to see
are in any case available on request (use our e-mail addresshat the grouping for the KLT is irrelevant since losses are
indicated in the title). A search for the optimal matrbcan independent and the coefficients uncorrelated. This distor-
be done with a gradient ascent algorithmiad = uV AC. sion has been compared to the distorsion obtained after the
It appears hard to infer in general from the structure of the inclusion of the correlating matrixd. Matrix A is com-
cost function what is the theoretical lower limit for the re- puted with the gradient ascent algorithm from knowledge
costruction error. However we have found experimentally of the eigenvalue set and the loss probability. The gain is
that in all cases our gradient searches give solutionsifor shown in Figure 2 with the highest improvement, about 5
that largely improve over the standard KLT scheme. Cur- dB, obtained when the process is highly correlated 0.9
rent investigation is devoted to the inclusion of appropriate and the loss probability is about 0.25. However, as it can
constraints ory. be seen from the figure, the improvement is appreciable in

Note that the gradient expression requires evaluation of most practical cases.
the average over all the possible erasure events and we need
to know or estimate the probability of each configuration.

This may be exponentially complex if the number of con- 3. THE TRANSFORM WITH QUANTIZATION
figurations is large. In our applications, however, it is likely

that the coefficient set are to be divided into a small num-  The next obvious step in this investigation is to establish
ber of subgroups (packets, in our experiments only three), if the introduction of the correlating matrix A leads to im-
that can exhibit a manageable number of loss configura- provements also when scalar quantization on the coefficients
tions. is included.

In the standard KLT scheme if scalar quantization is suf-
ficiently fine to be modeled as additive independent gaus-
st ] sian noise the total reconstruction mean square error at the
receiver can be estimated to be [1]:

il 1 E=a+p-DEY N+ (1 -p)& =E+E+ &,

gl ] where, = M - C - 2—2R(Hi]\igl A)VM with R = 2,

® ! N, = number of bits used by the quantizer, C' a constant

°r 1 and Bernoulli losses with loss probabilipy The quantizer

is the optimal gaussian quantizer for each coefficient based
on the knowledge of the relative variance (eigenvalue) [1].

The quasi-optimal performance of the scalar quantizeris
P to attribute to the fact that the coefficients are uncorrelated.
] ) i Therefore in our modified scheme, when a correlating block
Fig. 2. Computed theoretical gain on the KLT (no quant.) 4 is introduced, a loss of performance may happen if we
perform scalar quantization on the coefficients as they are
A simulation without quantization: We have performed  [5][6]. Therefore, we introduce within each partition subset
a large number of simulations on synthetic and natural sig- a decorrelating linear block; as shown Figure 1. In this
nals finding very consistent results [2]. We report here the way in each set we have coefficients that are globally corre-
case of transform coding of a Markov sequence with auto- lated to the others, but uncorrelated among themselves. By
correlationr(i) = p!il. This is a good test for our system stretching the assumption on the additive independent noise
because this model may approximate rather well the auto-model on each coefficient in this modified scheme, we can
correlation structure of signals of practical interest such as re-work the calculation done above with = C7 (e, n)z,,
image blocks and some speech segments. Inthis experiment, = P(z' + n) andz’ = DATQ?,x, where we have in-
the projections are supposed to be sent on the lossy channetluded in the vecton the independent additive noise com-
without quantization. The window size § = 160 and ponents, and in the block-diagonal matfixthe decorrelat-
only M = 90 components are kept after KLT. The values of ing blocks. Using Wiener filter theory, the best recostruc-
p range from 0.7 to 0.9 which in the absence of losses cor- tion matrix, which depends also on the autocorrelafiop
respond to a compression mean square efrdhat ranges  is C,.(e) = E[z.z!]| ' E[z.xT], with mean square error:
from about -10dB to -16 dB, respectively. The coefficients . -~
are partitioned into three groupspof dimeynsion 30 and inde- £ (&) = of — try Elxz;|Elz.z;] 1E[Z6XT]}' The ex-
pendent Bernoulli loss of packets with various loss proba- pectation is computed over all the possible erasure eeents
bilities p are simulated for the channel. We have computed and the quantization procegsBYy using steps similar to the

parameter=p




ones used for the unquantized case we have:

Ee) = o —tr[PDTATA2, ADPT of
(PDTATApADPT 4+ PR,PT)7']. (20)

ar 640; 720

The problem of non trivial optimal choice fot is formu-
lated as:

320 =

A, = argmazx, C
C = B, tr[PDTATA2, ADPT (11)
(PDTATAADPT + PR, PT)7!]. if

The gradient of with respect to4 is:

Va() = 2E.,[A},ADPTB;'PDT— '
—AvADPT BBy B PDT], Fig. 3. Computed theoretical gain over KLT (quantization
T AT T T (12)
B = PD"A"AyADP" + PR, P included,p = 0.84)
B, = PDTATA2,ADPT

6

A search for the optimal matriXd can be done, like in the
analysis without quantization, with a gradient ascent algo- o
rithm. Unfortunately, the cost function includes the quan-
tization error autocorrelation matrix, which in turn depends "
on A and on how the scalar quantizers and the decorrelating
blocks inD are designed.
Therefore, we adopt the following computing strategy:
1) divide the M coefficients into packets; 2) compute the
best matrix4 without quantization; 3) compute the decor- i
relating blocks inD using spectral decomposition; 4) cali-
brate a gaussian compander for each coefficient on the basis s ok o1 ol oz B 03 o 04 om0
of the estimated variances; 6) distribute the total number of
bits v, among all the coefficients using an optimal bit al- g 4. Simulated gain over KLT (quantization included,
location algorithm [1]; 7) estimate the quantization noise p = 0.84)
autocorrelation matrix?,;; 8) repeat the gradient algorithm
using alsal?,, to find a new matrix A, iterate.
The computational complexity of such an algorithm can 4. REFERENCES
be considerable if we estimate the autocorrelation matrix
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