DSP DATAPATH SYNTHESIS FOR LOW-POWER APPLICATIONS

Lih-Yih Chiou, Khurram Muhammand' and Kaushik Roy

School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47906, USA
tTexas Instruments, Dallas, TX 75243, USA

ABSTRACT

In this paper, we present a high-level synthesis tech-
nique targeting low power consumption for data- dominated
applications. We have used a statistical estimation tech-
nique to obtain switching activity of modules when sharing
of computing resources are required in a design. The tech-
nique enables us to understand switching behavior under
resource sharing. Using the relationship between switching
power and resource sharing thus obtained, we developed
scheduling and allocation algorithms to reduce data path
switching power. Experiments performed on various exam-
ples show up to 49% improvement in power reduction under
resource constraints.

1. INTRODUCTION

Low power applications continue to challenge the VLSI in-
dustry to design power efficient circuitry. Opportunities ex-
ist to explore the design space for power and performance
at different levels of design abstraction. At the architecture
level, transformations and high-level synthesis have been
used to address the challenging tasks of reducing power con-
sumption [1][2][3][4][5].

Although different power reduction techniques have been
proposed, most of the research in high-level synthesis only
consider average power consumption as the primary power
parameter to perform minimization, while in reality differ-
ent functional modules have different power consumption
under different input signal conditions. With the availabil-
ity of input statistics in the early phases of the design, high-
level synthesis can perform better trade-offs. Hence costly
redesign steps can be avoided.

The primary tasks in high-level synthesis are divided
into two phases: scheduling and allocation [6]. Scheduling
determines at what time step an operation will be executed.
Allocation consists of two subphases: resource binding and
module selection. Resource binding designates an opera-
tion (or a node) to a specific hardware instance that it can
be performed on. Module selection involves selecting a spe-
cific hardware implementation from a set of templates of a
functional unit.

High-level synthesis typically attempts to minimize the
execution time under the available resources. Recently, sev-
eral research have addressed the issues of minimizing power

This research was funded in part by DARPA, by Purdue
Research Foundation, and by ATT/Lucent Foundation.

dissipation at the behavioral level. The work in [7][5] mini-
mized switched capacitance during allocation and resource
binding, while module selection combined with voltage scal-
ing was proposed in [2]. Scheduling with data locality was
proposed in [3][4]. We use signal strength information to
perform scheduling, resource binding and module selection
when resource sharing is required in a design. The main
idea is to reduce the signal strength difference among in-
puts of a shared resource.

The rest of the paper is organized as follows. Section
2 reviews signal strength based switching activity models.
Section 3 describes our algorithms that take advantage of
the available power characterization and signal statistics.
Experimental results are reported in section 4. Finally, sec-
tion 5 draws the conclusions.

2. SIGNAL-STRENGTH BASED SWITCHING
ACTIVITY MODELS

Signal strength that is derived from world-level signal statis-
tics provide us means to characterize switching activity of
components with less parameters [8][9]. Models for shared
and non-shared resources have been constructed and used
to estimate switching activity at higher levels of design ab-
straction. We have found that there exists an empirical
relationship between switching power and resource sharing.

2.1. Signal Strength

The signal strength, 7, is defined as the number of bits
needed to represent the average signal power. 7 is given as

E(X2[n])

n=log:((2" ' —1) x y

+1) (1)
where X|[n] represents an input sequence to a DSP sys-
tem and is assumed to be a stationary Gaussian process.
E(X?[n]) is the average signal power of X[n] and N is num-
ber of bits used to represent the signal value. /E(X?2?[n])
equals the standard deviation of zero-mean signals. All sig-
nals are assumed to be uniformly quantized in a dynamic
range of +d and are represented in sign magnitude form
using N bits. With the given statistics of an input sequence
(such as average, variance and correlation) we can compute
1 of the sequence by using Eq. 1.

An example that uses signal strength to characterize
components is illustrated as follows. Consider a functional
unit, FU, whose two input ports are A and B. We apply data

sequences obtained from Gaussian distribution of different
signal strengths varying from 1 to N-1 bits on two inputs
of the module. The sequences to two inputs are A(n) and
B(n), respectively. The switching activity of a functional
block can be formulated as a function of 94 and 9B, i.e.
signal strengths of A(n) and B(n).

2.2. Models for Resource Sharing

The signal strength based switching activity model has been
extended for sharing of resources in [9]. The idea of shar-
ing resources implies that a shared functional unit has to
multiplex its input from different sources.

Difference in switching activity of a component (resource),
which will be referred to as Asw, is defined as the differ-
ence in switching with and without sharing. The difference,
Asw, can be positive or negative. Experimentally, we have
observed an increment in switching activity in most cases
for resource sharing. We observed that the Asw of a shared
functional unit is affected by the difference of 7’s of input
sequences. A, will be used as the notation for difference of
7’s for any two signals.

The sharing condition is based on the difference of n’s at
every primary input of a module. Consider the FU, that is
alternately shared by two operations, OP; and OP,. Each
operation originally has two incoming sequences, A1(n) and
Bi(n) for OP; and Az(n) and B3(n) for OP;. The corre-
sponding 7’s are denoted as 741, 1b1, a2 and 2. The A, of
two sequences into input A is computed as Dy = |1q1 —7a2|-
Dy = |np1 — mp2] is for input B. Using D, and Dy as well as
7e1 and 71, the switching activity of the shared FU can be
constructed .

2.3. Switching Activity with Resource Sharing

Next we explain the relationship between switching power
and resource sharing. We first define percentage switching
increment () to indicate the relative switching behavior
under sharing of resources. Percentage switching increment
is defined as follows:

__ Difference in switching activity(Asw)
7= Switching Activity without sharing

100. (2)

Figure 1 show the normalized percentage switching in-
crement for a most significant bit(MSB)-first carry-save (CS)
array multiplier [10] under resource sharing. There are
five bars for every position of 7. Each represents D, =
1,2,3,4,9. The sharing conditions are D, = 0 while D,
is varying. The varying D, is based on fixing 7,1 to 6.
As Dy = |Ma1 — Ma2|, Ma2 can take the following values:
7,8,9,10,15. We collect data from 5 different sharing condi-
tions, (Dg = 1,Dy = 0), (Dg = 2,D, = 0), ..., (D, =
9,D, = 0). We take the data at 7,1 = 6 and m =
1,2,...,14 from each sharing condition and place them side
by side. We normalize bars at every position of m,1 by the
bar whose value is the largest among the five bars. For
example, bars that represent v at D, = 1,2, 3,4, 9 are nor-
malized by the v at Do = 9. We observe that no matter
how large mp1 is, there is always about 90% difference be-
tween D, = 1 and D, = 9. Similar behaviors can be ob-
served for least-significant-bit(LSB)-first array multipliers,

M8 firsi-cs multipliet with D =0and D_ varying i =&

D=

o
»

Mormalized peroentage switching inc mmant wir i
o o =]
[- @
T T T
—
-
o
o —__
—
O —
Rl —
% [
I L L

Fig. 1. Normalized Percentage switching increment (vy) for a
16-bit most-significant-bit(MSB)-first carry-save(CS) array
multiplier under resources sharing when Dy = 0 and D, is
varying at 7, = 6

tree multipliers and adders. These results suggest that A,
of sequences which share the same resource has significant
impact on switching activity. We will discuss how to ap-
ply these observations to high-level synthesis in following
section.

3. ALGORITHMS

The observations we made from section 2 can be restated
as follows: sharing a resource among two operations with
higher signal similarity can result in a module that gener-
ates lower switching activity (hence, consumes lower power).
With this idea in mind, we formulate the scheduling and al-
location algorithm in Fig. 2. Our goal is to demonstrate
that strength of input signals can be incorporated to im-
prove designs. We focus our discussion on the sharing of
two operations for one resource for demonstrative purposes.
Nevertheless, we have implemented our method to perform
resource sharing of n operations.

3.1. Definitions

Let us define a factor (S) called signal similarity of two
nodes (or operations) to help understand our algorithms.
Signal similarity is given as

S = D1 (3)

k-1 k=1
1
D, = m(; [Ma; — nai+1| + ; |70, — Mbit1) (4)

where k is number of sharing for one resource. In the
sequel, we will limit our discussion to & = 2 from now
on for simplicity. All discussions for & = 2 can be ap-
plied to any k with some modifications. For k = 2, D, =

|T]a1 - na2| + |"7b1 - "7b2|-

The similarity, S, indicates the closeness of two input
signal profiles. Each input signal profile has two sequences
that can be applied to two inputs of a node (or operation),
respectively. D, is the distance of n’s (signal strength) of
two signal profiles. The n’s of the first signal profile are
denoted as 7,1 and 1. 142 and g2 are n’s for two sequences
of the second signal profile. The smaller the D, is, the
higher is the similarity (S).

G ={n|nodes in DFG}
A ={alresource assignment}
ST = {st|input signal statistics for n in G}
1. Perform Mobility and Similarity analysis
2. For each node n in G
from least mobility to highest mobility, do
2.1 If mobility(n)= 0, AssignTimeStep(n, ASAP(n)).
2.2 Otherwise, find a time slot, p, according to
similarity exclusive rule and AssignTimeStep(n, p).
3. For each function type f of G, do
3.1 Perform initial resources assignment, A
3.2 Create a Pair List, NPL
3.3 For each pair np in NPL
from highest similarity to least similarity, do
3.3.1 If none of the members in np is assigned,
bind members of np and update A.
3.3.2 If one of the member in np reaches
the max number of sharing,skip to next pair.
4. For each a in A, do
4.1 Assign a with a module
from library with least power consumption.
5. Done

Fig. 2. Algorithm

In the following, we describe steps to perform scheduling
and allocation under minimum latency constraints.

3.2. Scheduling

In step 1 mobility and similarity analysis leave us with two
mobility and similarity priority lists that are needed when
deciding the order of assigning nodes. In step 2 we proceed
to assign time steps to nodes. The goal is to maximize the
chances of operations to share modules with higher simi-
larity to reduce overall switching activity (power consump-
tion). Nodes with least mobility are assigned first. Nodes
that have non-zero mobility are assigned to time steps sub-
ject to not only data dependence and resource constraint,
but also to the similarity exclusive rule. Similarity exclusive
rule keeps nodes with higher similarity from overlapping
their time steps. It is better explained using the example in
Fig.3. In the example, M1, M2 and M3 are already sched-
uled. M4 is the next one to be scheduled. Since resource
constraint is 2, M4 can be assigned to any time step be-
tween 3 and 5. By similarity exclusive rule, M4 will avoid
time steps 3 and 4 occupied by M3 and will be assigned to
time step 5. By avoiding assigning M3 and M4 in the same
time step, we can have M4 to share one functional unit with
M3. Their similarity is 1, the largest in the similarity list.

Resource constraint 1. = 2
Similarity:

(M1, M4) = 0.25;

(M2, M4) = 0.25;

(M3, M4) = 1;

M1 scheduled to time step 1;
M2 scheduled to time step 1;
M3 scheduled to time step 3;
M4 to be scheduled;

(a) An example DFG (b) conditions

Fig. 3. An example of similarity exclusive rule. Here mul-
tipliers takes two time steps to perform multiplication.

3.3. Allocation

In the resource binding phase (step 3 in Fig. 2), the goal is
to maximize the number of sharing of resources while min-
imize the power. We use a greedy method to find pairs of
operations from high similarity to low similarity. We first
pair operations that are compatible and order pairs accord-
ing to their similarities. Then we add one pair at a time
to the solution set. The process stops when sharing is no
more possible. Though this would not guarantee an opti-
mal assignment, it will return a promising solution. In the
module selection phase (steps 4 in Fig. 2), by using the
signal strength switching activity tables obtained in section
2, we can scan through finite number of library modules
quickly and select the one with minimal power consumption
(switching activity) based on signal strength at primary in-
puts.

4. EXPERIMENTAL RESULTS

In this section we present the effectiveness of the proposed
synthesis techniques on different benchmarks using accu-
rate power simulator, PowerMill. We compare two design
methods. First one uses our technique with the informa-
tion of signal strength. The other one is implemented using
conventional method without knowledge of signal statistics.
Both methods have the same number of resources (i.e. func-
tional units, registers and multiplexiers) and timing con-
straints.

4.1. Setup and Procedures

We obtain architectural-level designs by two different meth-
ods and synthesizes the designs from the architectural level
to the circuit level. First, signal statistics are propagated
from the primary inputs using the analytical method given
in [11]. With the signal statistics such obtained, signal
strength can be computed. Second, we apply our algo-
rithms to perform scheduling and allocation. The proto-
type software has been implemented in the C++ program-
ming language. Third, we use Synopsys Design Compiler
to synthesize the VHDL code using low-power standard cell

Benchmark Data Conv. Our Reduction
AUD1 | 1003.18 783.29 28.1%
FIR6 AUD2 | 1241.57 | 1033.66 20.1%
TMG1 972.17 734.94 32.3%
AUD1 2277.05 1661.44 37.1%
FIR11 AUD2 2891.12 2183.88 32.4%
IMG1 2253.82 | 1652.99 36.3%
AUD1 | 1595.65 | 1238.07 28.9%
IIR4 AUD?2 | 2044.62 | 1750.36 16.8 %
TMGI 1722.48 | 1153.38 49.3%
DIFF SIT1 1455.81 1212.76 20.0%

Table 1. Simulated power consumption of functional units
in the benchmarks. (pw)

Data FU Overall
AUDI 281% 17.6%
FIR6 || AUD2 | 20.1% 15.3%
TMG1 32.3% 18.5%
AUD1 | 37.1% 23.5%

FIRIY—3Opo 1 32.4% | 22.9%
TMGI | 36.3% | 23.4%
1IR4 AUD1 | 28.9% 11.2%

AUD2 | 18.8% 7.6%
IMGI 49.3% 26.7%
DIFF|| SIT1 20.0% 14.47%

Table 2. Power reduction for different components.

library developed by Carnegie Mellon University [12]. The
cell library is implemented using 0.35um CMOS technology
with 3.3V supply. In the last step we use a variety of data
sequences to evaluate designs. AUD1, AUD2 and IMG1 are
real audio and image data signals. SIT1 is real processing
data sequences for DFF. The power consumption reported
by PowerMill is the average power consumption over the
entire simulation period.

4.2. Analysis of the results

Various benchmarks including FIR, IIR filters and a dif-
ferential equation solver (DIFF) are used to evaluate our
algorithm. All benchmark circuits have datapath width of
17 bits. Experimental results are summarized in Table 1
and 2. Table 1 reports the simulated power consumption
of functional units for every benchmark. Table 2 provides
power reduction using our signal-strength conscious design
method. The results indicate that our design reduces power
consumption of functional units up to 49% and 26% for the
overall system.

It is worth mentioning that power consumption in reg-
isters can be the dominant component. Registers consume
about 40-60% of the total power consumption, while func-
tional units use up to 50%. Power consumption in control
logic is less than 2%. This is partly because our current
methodology does not minimize the power consumption of
registers. This suggests that more efforts on minimizing the
power consumption of registers are required.

5. CONCLUSIONS

‘We developed a behavioral synthesis method that can lower
power dissipation through scheduling and allocation. Our
algorithm heuristically schedules operations partly by mo-

bility and partly by similarity of signal strength, binds re-
sources by using a greedy approach, and select modules with
least power based on signal strength. Experimental results
show significant reduction in power dissipation (up to 49%)
with respect to the conventional design technique.

6. REFERENCES

[1] A.P. Chandrakasan et al., “Optimizing Power Using
Transformations,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol.
14, no. 1, pp. 12-31, January 1995.

[2] L. Goodby, A. Orailoglu, and P.M. Chau, “High-Level
Synthesis Methodology for Low-Power VLSI Design,”
in Proceedings - IEEE Symposium on Low Power Elec-
tronics, 1994, pp. 48-49.

[3] R. Mehra, L.M. Guerra, and J.M. Rabey, “Low-power
Architectural Synthesis and the Impact of Exploiting
Locality,” Journal of VLSI Signal Processing, vol. 13,
pp. 239-258, 1996.

[4] E. Musoll and J. Cortadella, “Register-Transfer Level
Transforms for Low-power Data-Paths,” Integrated
Computer-Aided Engineering, vol. 5, pp. 315-332,
1998.

[5] A. Raghunathan and N.K. Jha, “An ILP Formulation
for Low Power Based on Minimizing Switched Capaci-
tance During Data Path Allocation,” in 1995 IEEE In-
ternational Symposium on Circuits and Systems, 1995,
pp. 1069-1073.

[6] D. Gajski and N.Dutt and A. Wu, and J.T. Ludwig,
High-Level Synthesis, Kluwer Academic Publishers,
1992.

[7] J. Chang and P. Massoud, “Module Assignment
for Low Power,” in Europen Design Automation
Conference(EURO-DAC), 1996, pp. 376-381.

[8] M. Lundberg, K. Muhammad, K. Roy, and S.K. Wil-
son, “High-level Modeling of Switching Activity with
Application to Low-Power DSP System Synthesis,” in
IEEE International Conference on Acoustics, Speech,
and Signal Processing, March 1999, pp. 1877-1880.

[9] L. Chiou, K. Muhammad, and K. Roy, “Signal
Strength Based Switching Activity Modeling and Esti-
mation for DSP Applications,” VLSI DESIGN, To ap-
pear in Special Issues on Low Power Computer-Aided
Design, 2001.

[10] K.Muhammand, D. Somasekhar, and K. Roy, “Switch-
ing Characteristics of Generalized Array Multiplier Ar-
chitectures and their Applications to Low Power De-
sign,” in Proc. of International Conference on Com-
puter Design: VLSI in Computers and Processors, Oc-
tober 1999, pp. 230-235.

[11] S. Ramprasad, N.R. Shanbhag, and I.N. Hajj, “Ana-
lytical Estimation of Transition Activity from Word-
Level Signal Statistics,” in Proc. of 34th ACM/IEEE
Design Automation Conference (DAC), June 9-13
1997, pp. 582-587.

[12] C. Inacio, “The Carnegie Mellon Synthesizable Digital
Signal Processor Core,” CMU DSP Team Report, June
1999.

