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ABSTRACT

Featureextractiononthefaceplaysanimportantrolein ap-
plicationsof modelbasedcodingand humanfacerecogni-
tion. Traditionally, eyesandmouthareconsideredo bethe
mostsignificantfeaturescontributing to differentfacial ex-
pressions.However, detectingandtrackingthe noseshape
is non-trivial, and plays an equallyimportantrole aseyes
andmouthfor modelbasedcoding, especiallyfor analysis
andsynthesisof realistic facial expressions.In this paper
a featuredetectionmethodon the facial organareass pre-
sentedIndividualtemplatesaredesignedor thenostriland
nose-side.First, the featureregions are limited to certain
aready usingtwo-stageregion growing methods.Second,
the pre-definedtemplatesare appliedto extract the shape
of the nostril and nose-side.Finally, the extractedfeature
shapesreexploitedto guideafacialmodelto completean
accurateadaptationTheadvantageof the proposedscheme
is demonstrateddy experimentonrealvideosequencefor
low bit ratevideocoding.

1. INTRODUCTION

Facialfeatureextractionis critical for facialexpressioranal-
ysis and synthesisfacerecognition,and model adaptation
for modelbasedcoding. Mostresearcherbave beenfocus-
ing ontheextractionof theeye andmouthshapesn the past
decade$l, 6, 7, 3, 4]; few have paidattentionto noseshape,
which is animportantpart of facial expressiorrecognition
andgenerationOneof theimportantapplicationof extract-
ing andtrackingnoseshapeis to generatea realisticfacial
expressiorin thescenaricof SNHC (Synthetic-NaturaHy-
brid Coding) formed within MPEG4 [2]. The important
nosefeaturedie in the shapeof nostrilandnoseside. The
accurataletectionof noseshapecanbeimportantfor facial
expressiorsynthesisespeciallywhenapersoris smiling or
laughing.Subtlechangeof noseshaperesultsin a different
expressiongvenadifferentemotion,of aperson.In this pa-
per, we proposean efficient methodto detectandtrack the
nostril shapeand nose-sideshapebasedon individual de-
formabletemplatesFirst, thesilhouetteof themoving head
is extracted. In the extractedheadarea,facial featurere-
gionscanbelocalizedby usinga two-stageregion growing
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method.Then,the featureshapeof a nosecanbe extracted
in the limited featureregionsusingpre-definedleformable
templates.In Section2, an algorithmfor localizing facial

featureregionsis presented Section3 and4 describehow

to extract the noseshape,andhow to adaptthe modelon

to a face. Experimentakesultsare presentedn Section5.

Finally, concludingremarksaregivenin Section6.

2. FEATURE REGIONSLOCATION

In orderto track the headmotion, an active trackingalgo-
rithm for trackingthe headsilhouetteis developedin [5].
The headsilhouettegreatlyreduceshefeaturesearcharea.
Sincefacialskin otherthanfacialfeaturesandhair exhibits
a similar propertyin color andluminance,region growing
is suitablefor extractingthe connectedskin area. In order
to make the facial featuredetectionlesssensitve to noise,
atwo-stageregion growing algorithmis developed- global
region growing andlocal region growing. In globalregion
growing, a large growing thresholdis selectedn orderto
explore more skin area. Only the mostdistinct featurelo-
cations,suchasthe darkest partsof the eyes, the nostrils
and in-betweenthe lips, remain,while their size informa-
tion is not kept. The secondstageis local region growing,
wheretheregion informationis estimatedn theindividual
featureareas.The initial seedpixel of the skin is selected
in the local area,and a smallergrowing thresholdcan be
selectedsothata small skin areasurroundinghe facial or-
ganis detectedandproducesas muchfeatureinformation
aspossible.

2.1. Featurecenter location by global region growing

The facial featuresare searchedvithin the obtainedhead
silhouettearea.In generalighting conditions,the hair and
the face exhibit distinct color attributes. Also, the facial
featuresof the iris, eyebraw, in-betweenlips, and nostril
have a distinguishabledarknessomparedo smoothfacial
skin, which usuallyexhibits uniformity in color. Hence the
featureregions can be extractedby segmentingthe image
using region growing basedon the color componentsi.e.,
luminance(Y) andchrominancgU,V). Theimageis parti-
tionedbasedon the checler-boarddistancen region grow-
ing, thedistanceD betweenseedpixel (ys, ug,vs) andthe
growing pixel (y;,u;,v;) is definedin Formulal. Larger



variationsareallowedin the luminancecomponenof are-

gionthanin thechrominance&omponentin orderto ignore

small changesn luminancecauseddy shading. Therefore
weights(1/4,1,1)are usedfor YUV. Regions smallerthan

a certainnumberof pixelsarenottakeninto consideration,
andareremoved.
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The region growing is performedby selectingthe central
point of the headareaasa seedpixel. The size of grown
region must be examinedto ensurethatit is a reasonable
faceregion; if it exceedsa predefinedange,a new seedis
selectedrom the neighboringpixels,or thethresholds ad-
justed,to generatea new region. This processis iterated
until a skinregionis found. After the skin region growing,
anumberof regions(blobs)areobtained.In orderto extract
thefacialorganblobs(e.g., eyes,mouth,nose etc.),thetop
blobsandthebottomblobs(e.g., hair, collar, cloth,etc.) are
removed. The featureblobsarethenprocessedor further
classification.

Classificationof the regionsof eyesnoseand mouth
After obtainingthe setof featureblobs,the next taskis to
classifytheminto four groups.i.e., left eye blobs,right eye
blobs, noseblobsandmouthblobs. Thesefour classesre
distinguishableby the vertical distanceand horizontaldis-
tanceof the blobs. The k-meansclassifieris anidealtool to
classifythem. Figure 1 illustratesfeatureblobs classifica-
tion andfeaturecenterestimation.To explainthe clustering
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in Figurel, severaltermsaredescribedasfollows: (i) Cen-

tral Point of ablobis the pixel with anaveragecoordinate
of theblob. (ii) Blob Distance is the distancebetweenthe
central points of two blobs. Vertical Distance is the dis-

tanceof two blobs alongthe y-axis. Horizontal Distance

is the distanceof two blobs along the x-axis. (iii) Verti-

cal clustering refersto theclassclassificatiorusingvertical
distance.Horizontal clustering refersto the classclassifi-
cation using horizontaldistance. After obtainingthe four

featureclassesthe class center for eachfeatureclasscan
be obtainedby takingthe averageof all blob centersof that
class.Figure2 (col 1) shonvs someexamplesof the feature
estimation.

2.2. Location of featureregionsby local region growing

Thelocal areaof eachfeature(organ)is determinecby the
estimatedocationof the featurecenterandthe predefined

surroundingsize. To grow askin regionin thelocal area,a
seedixelis selectedrom theperipheryskinareaof thefea-
tureorgan.A smallergrowing thresholdD is predefined.
Thefeatureblobswith largeareaarecreatedpasecdnly on
theluminanceof theimageratherthanthethreecolor com-
ponents.The featureregion is a complementansetof the
grown region within a surroundingwindow. Finally there-
gion size of eachorgan (calledthe organ window) canbe
derived from the extractedfeatureblobs which are repre-
sentedby a binary image. The featureareais represented
by ahighvaluewhile thebackgroundareais representetly
valuezero,asshowvn in Figure2 (col 2). Thesizeof thede-
tectedfeatureorgansis determinedy the pixelsof theleft-
most, right-most,top andbottomof the featureregion. By
usinglocal region growing, featureareaswith clearbound-
ariescanbeobtainedasshavn in Figure2 (col 3).
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Figure2: Left: Classifiedfeaturesafterglobalgrowing (the
bottomterminal of eachline is the centerof eachfeature);
Middle: Extractedfeatureblobsafterlocal growing; Right:
Therestrictedwindow area.

3. SHAPE ESTIMATION

The above work shavs how facial featuresarerestrictedin

the correspondingvindows. In this sectionwe addresghe
issueof extractionof thereal shapedor the modeladapta-
tion. The shapeof facial featuresmainly refersto the con-
tour of eye, eyebron, mouth, nose(nostril and noseside),
andchin. A variety of approachesave beenproposedor

the shapedetectionof facialfeaturesjncludingdeformable
templatematching[7], Houghtransformsandcolorimage
processind4]. The deformabletemplatemethodrequires
an accurateinitial localization, it alsoinclines to shrink.
Many enegy termsmalke the computationmore complex.

We overcomesomeof thesedifficulties by improving the
initial localizationprocesshy makingfull useof the color

information. Eye detectionusesHoughtransformto search
theiris positionandsizein orderto determingheinitial lo-

cationof the eye template. Thework on eye detectionusing
saturationinformation hasbeendevelopedin our previous
work [6]. Herewe focuson the descriptionof nosefeature
detection.



3.1. Detection and tracking of nose shape

Theimportantnosefeaturedie in the shapeof nostril and
noseside. The accurateshapeof the nostril andthe nose
sidecanbeimportantfor composinga facialexpressiongs-
pecially when a personis smiling or laughing, the nostril
shapeandthe nosesideareohviously changed.

Nostril estimation

The nostril hasa distinctive darknesgrom the facial skin.
As mentionedin the previous section, color-basedregion
growing can roughly detectthe position and the approx-
imate shapeof the nostrils. In orderto detectthe nostril
shapecorrectly a geometrictemplateis further appliedon
the nostril region, which is a twistedpair curve with a leaf-
like shapeasshownin Figure3. Thenostriltemplates de-

Figure3: Templateof nostrils(Left andRight)

finedasa partof a twistedpair curve, which is represented
in the polarcoordinatesystemas:

p? = a’cos(sh) 2

The nostril on the right sideandthe left sideof a nosecan
be representedby the up-right curve andthe up-left curve,
respectiely. Parameten is thewidth of anostril. Parameter
s controlstheshapeof thecurve,whichcantake arealvalue
in the range[1,10]. The smallerthe s value, the thicker
the leaf-shapeappearsBesideghe parameterg ands, the
orientationof the z axis and the position of the origin o
canalsobe adjustable. The relationshipbetween(z, y) in
Cartesiarcoordinatesystemand (p, ) in polar coordinate
systemis definedas:

z = peos(6),y = psin(6) 3)

Fromthe detectionof the noseregionsin the previous sec-
tion using color-basedregion growing, the initial width of
thenostrilcanbedeterminedy calculatingthe distancebe-
tweentheleft-mostpixel andtheright-mostpixelin thenos-
tril region. Theinitial orientationof thenostrilcanbedeter
minedby the eigervectorwith the largesteigervalueof the
nostril pixel region. The initial value of the shapecontrol
parameters is setto 2. Note that the two nostrils are as-
sumedo besymmetricwith respecto thecenterline of the
face;anostrilmissedn thepreviousstagecanbeby flipping
a detectedone. After theinitial parametersare estimated,
the deformabletemplatematchingcanbe performed. The

costfunction for enegy minimizationis definedbasedon
the assumptiorthat: (1) the nostrilshave distinctive dark-
nesscomparedo the skin, and(2) the luminancegradient
hasahigh valueattheborderof anostril. The costfunction
for theright nostrilis definedas:

E™ = kBl in + k2Bl g 4)
where .
Eumzn =Ta /(I)lumzn(f)dA (5)
: | A
grad = |B | / grad (6)

Theabove equat|on$st|matethe brightnesof the nostrils,
andtheluminancegradientrespectiely. A, is theareain-
sidetheupperhalf of theright leaf-shapeurve. @4, (%)
is the value of luminancecomponenbf the nostril region.
®,-44(Z) is the edgemagnitude.The costfunctionfor the
left nostril hasthe samedefinition asthe onefor the right
nostril, excepttheleft leaf-shapeurveis usedinstead.Dur-
ing theminimizationevery parameteof thedeformablaem-
plate (location,orientation width, shapeanbechanged.

Nose side estimation

The nosesidehasa shapdik e a vertical parabola(Assum-
ing that the noseorientationhasbeennormalizedinto the
straightdirectionwhich is parallelto the facecenterline.)
A pair of templatef the noseside (boththeright sideand
theleft side)aredefinedin Figure4,
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Figure4: Templateof noseside
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Theinitial cornerof thenosesiden; is fixedsincethenos-
tril hasbeenestimated. The parametem , andthe width
hns needto be estimatecby minimizing the enepy, asde-
fined belon. The costfunction for the right side of a nose
is:

z = (hls(l_ ),.Z'T = (hm(l_

" = k1 Ejymin + k2Egrq (8)
where
Eloimin = / Prumin(Z 9)
A
Egﬁad / grad (@)d (10)
B



A, is the areainside the parabolawhich hasbright lumi-
nancevalue ®;,,,:» (Z) in thefold on the sideof the nose.
.44 (£) is the edgemagnitude. The costfunctionfor the
left sideof a nosehasthe samedefinitionasthe onefor the
right side. Figure5 shavs somesampleframeswith the
detectedhostrilsandnosesides.

Figure5: Deformabletemplatematchingon noseshape.

4. FACIAL MODEL TRACKING

After thefacialfeatureregionsandshape®nvariousorgans
areestimateda 3D wireframemodelcanbe matchedonto
theindividual faceto trackthe motion of facialexpressions
using enegy minimization (see[6] for the detailedmodel
adaptatioralgorithm). Fig. 6 shovs somesampleresultsof
modeltracking.

Figure6: Modeltracking(“Mario™: frame20,32,42,62).
5. EXPERIMENTAL RESULTS

We usea cameramountedon anactive platform(pan/tilt) to
take anactivevideosequenceyhich shavsatalking person
with anunconstrainedbackground.The camerarotationis
lessthan+5°. Notethatour deformableemplatematching
algorithmonly usesseveral single stepsto fit the template
tothefacialfeaturesit avoidsthecomputationatomplexity
for alargeamountof searctof theparametersandthetem-
plate shrinking problem. Figure 7 shavs somesamplesof
featureshapedetection. Combinedwith our previouswork

Figure7: Top: coarseregionsby two-stageregion growing;
Bottom: detectedacialfeatureqGuan: frame10,24,41)

Figure8: Detectedfeatureson video [top]:San, Dana and
Xun; [bottom]: Alau, Dima

[6, 5], 5 othervideo sequencesaretestedaswell. Notice
thatnostrilandnose-sidareamongthefeaturesdetectedn
Figure8. Theoverallperformancémeasuredverall tested
frames)givesan indication of the capability of the system
to detectmostnosefeaturescorrectly(only 18framesout of
270framesshavedthatthe positionerrorin noseareawas
beyond3 pixels).
6. CONCLUSION

In this paperwe proposeda noseshapedetectionmethod
for low bit ratemodelbasedcoding. This newv methodlim-
its the searchregion, andusesthe shape-adapte modelas
a remedyfor the shrinking effect of deformabletemplates.
Initial resultsshaw thatthis approachs feasiblein practical
applicationsIn our futurework, morerobustfeaturedetec-
tion algorithms(to dealwith large rotation of a face)and
realtimeissueswill beinvestigated.
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