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ABSTRACT

Recently Heteroscedastic Discriminant Analysis (HDA) has
been proposed as a replacement for Linear Discriminant
Analysis(LDA) in speech recognition systemsthat use mix-
tures of diagona covariance Gaussians to model the data.
Typically HDA and LDA involve a dimension reduction of
the feature space. A specific version HDA that involves no
dimension reduction, and is popularly known as Maximum
Likelihood Linear Transform (MLLT) is often used on the
feature space to give significant improvements in perfor-
mance. MLLT approximately diagonalizes the class covari-
ances, and in effect, tries to approximate the performance
of a full-covariance system. However, the performance of
a full-covariance system could in some cases be much bet-
ter than using ML LT-based diagonal covariance system. We
propose the method of Multiple Linear Transforms (MLT),
that bridges this gap in performance, while maintaining the
speed efficiency of adiagonal covariance system. Thistech-
nique improves the performance of a diagonal covariance
system, over what could be obtained from HDA or MLLT.

1. INTRODUCTION

We propose a new technique - Multiple Linear Transforms
(MLT) - that uses a model-based approach to improve the
performance of a diagonal covariance recognition system
without incurring the penalty of a full-covariance system.
In some cases the performance may even be better than that
of the corresponding full-covariance system.

Linear Discriminant Analysis(LDA)[1, 2], and it'sgen-
eralization Heteroscedastic Discriminant Analysis(HDA) [3,
4], and it's specia case, the Maximum Likelihood Linear
Transform (MLLT) [6], are now being used in place of aug-
menting the cepstral features with their first, and second or-
der differences. Gales' global transform for semitied covari-
ance matrices [5] is identical to MLLT but applied in the
model space. Demuynck [7] uses a minimum divergence
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criterion between posterior class distributions in the origi-
nal and transformed space to estimate an HDA matrix.

Under these approaches, the HDA or LDA techniques
are viewed as feature space transformations, that result in a
new set of features, which arethen used recognition. Saon [8]
extensively analyzed various combinations of LDA, HDA,
and MLLT, and discovered that the application HDA for fea-
ture dimension reduction, followed by MLLT, resulted in
the best performance.

Asshown by Kumar [4], MLLT can be viewed asamod-
eling technique that places certain constraints on the gaus-
sian models. However the constraints are too restrictive,
since they assume that every gaussian can be diagonalized
by using the same linear transformation. Gales' multiple
semi-tied covariances relaxes this assumption by assuming
that groups of Gaussians have the same diagonalizing trans-
form. The MLT method proposed here relaxes this assump-
tion even further by allowing each gaussian to have its own
diagondlizing transform. However, the number of param-
eters is kept small by alowing tying on a component by
component basis.

2. MULTIPLE LINEAR TRANSFORMS

Consider a classification problem where each input feature
vector, z € R™, hasto be classified into one of .J classes -
with each class modeled by a single full-covariance Gaus-
sian. Under the MLT scheme the input vector x is assigned
aclass according to the following algorithm. First = is mul-
tiplied by an x k& matrix 8 (k > n), resulting in

y=0Tc. (1)

Each class j has a predefined subset .S; containing exactly
n distinct indicesin therangel, ..., k. y; isdefined as the
n dimensional vector generated by choosing the subset S ;
fromy, and y;; isthe I'th componentof y; (I = 1,...,n).
6; is defined as an x n submatrix of 6, that is a concate-
nation of the columns of &, corresponding to indicesin S ;.
In addition, o ;; is defined as positive real number denoting
the variance of I’th component, of the j’th category.



Then the combination of # and .S; defines a unique lin-
ear transformation 9]1 for each class j. Moreover, for a
given class, this linear transformation could be potentially
different from that for every other class. However, the like-
lihood of the observation = can still be computed as
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Then the observation X is assigned to that class, for which,
the corresponding value of L ; is maximum. Note that the
first two terms in the equation 2 do not depend on z, and
therefore, are precomputed, and stored, prior to classifica-
tion. The parameters of this MLT model are 6, S;, o;,,
and p; ;. Another view of MLT is that each class is mod-
eled with an inverse covariance of the form 6; D67 where
columns of §; are drawn the columns of § using S; and D;
isdiagonal. Contrast thiswith semi-tied covarianceswhere
the covariance is modeled in the form AD ; AT (where the
A’s could be shared across sets of classes and D is diago-
nal).

2.1. Parameter Estimation

We propose estimating the MLT parameters using maxi-
mum likelihood method. Given labeled data (z;, g;), if 6
and S; are known, then, the remaining parameters are cal-
culated asfollows:

pj = 72293:]- ajTlxi; 3)
9i=J

o) = Egi§f$i;“j)2. (4)
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Now the likelihood of the data can be written as
J n
L(0,{S;}) =Y Nj = (2log|6;| = Y _log(c;1)), (5)
j=1 =1

whered;, and X ; implicitly depend onthe S;. S; isnot as-
sumed to be known apriori. Searching for the best S'; (using
ML) is infeasible due to the combinatorial complexity. We
have investigated two possible heuristics to arrive at 6 and
corresponding S;. One is a bottom-up clustering approach,
and the other is top-down splitting approach.

2.2. Clustering Approach

For each class j, compute
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La similar factorization has been reported in [9].

where Z; isann x 1 vector, and X; isan x n matrix. let
E; be the matrix containing all the eigenvectorsof ¥ ;. Let
E; ; be thei’th eigenvector of 3 ;. Aninitia estimate of 6
isgenerated asan x (nJ) matrix that is a concatenation of
all the eigenvector matrices.

6 =[E1...Ej] (8)
Also, theinitial estimate S; is given as
Sj={n(J—-1)+1,...nJ} 9)

suchthat ; = E;. u; and o; are computed from equations
3and 4.

We define merging of two directions as the following
operations:

1. Two indices o and p are chosen that belong to {S;}
and satisfy the constraint that there is no index j for
which o, and p both belongto S ;.

2. All the entriesin {S;} that equal o, are replaced by
the number p.

3. o'th column of € isremoved.

4. lissubtracted fromall theentriesin S ; that are greater
than o (to make sure that they still point to the correct
column of ).

Then o is said to be merged to p.

Now new estimate of # and {S;} are created, by apply-
ing the best merge. The best mergeis defined as that choice
of permissible o and p that resultsin the minimum reduction
inthevalueof L(#,{S;}) (seeequation5).

Next, numerical algorithms such as conjugate gradients
are used to maximize L(6,{S;}), with respect to §. The
process of merging and optimization is repeated until, the
net decrease in L(#, {S;}) due to a merge is more than a
threshold § or until § hasthe desired size.

2.3. Top down Approach

An alternate scheme would be particularly useful when the
pool of directionsis small relative to the number of classes.
We start with apool of precisely n directions (recall n isthe
dimension of the feature space) and estimate the parameters.
Thisis equivalent to estimating the MLLT transform except
that thereis a parameter S;, that isinitialized to

S; = {1...n}vj. (10)

We then add ancther direction to the pool, and randomly
assign some S; entriesto this new direction. Then we max-
imize the likelihood, and reassign the entriesin .S ; to the di-
rection that results in the maximum gainin likelihood. This
procedure is very similar to K means clustering approach,
except for the minor difference that instead of the bounded
distance function, we are optimizing for the likelihood.



2.4. MLT with MixtureModelsand HMMs

Speech Recognition systems, typically employ Hidden Markov

Models (HMMs) in which each node, or state, is modeled as
amixture of Gaussians. The well known expectation maxi-
mization (EM) algorithmis used for parameter estimation in
this case. The techniques described in the previous section
easily generalize to this class of models, asfollows.

Theclassindex j isassumed to span over al the mixture
components of al the states. For example, if there are two
states, one with two mixture components, and the other with
three, then J is set to five. In any iteration of the EM algo-
rithm, ~;(¢) is defined as the probability that the data point
at time ¢ belongs to the j’th component. Then equations 3
and 4 are replaced with
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Similarly, equations 6 and 7 are replaced with
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The optimization is then performed as usual, at each step of
the EM al gorithm.

2.5. Computational Speedup

Under the top down scheme, significant amount of savings
in computational cost can be obtained by focusing in one
direction at atime. It turns out that given £ — 1 columns of
# the remaining column and the (possibly soft) assignments
of training samples to the classes the remaining column of
# can be obtained as the unique solution to a strictly convex
optimization problem. This suggests an iterative EM update
for estimating . The so called @ function in EM for this
problemis given by

const + Z v, (t)logp;(xt) (15)
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Let a beaparticular columnof 6 (i.e. adirection). Let S(a)
be the list of states (or classes) that include direction a. Let

071 = lcjaa™| where ¢; . is the row vector of cofactors
associated with complementary (other than a) rows of Hf.
Let o;(a) be the variance of the direction a for state j (i.e.,
that component of o ;). Differentiating equation 16 with re-
spect to a (leaving al other parameters fixed) and equating
the derivative to zero gives
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Then we have the fixed point equation for a
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where
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We suggest a“relaxation scheme” for updating a.

CiamaG1
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Onew = AGold + (]- - )‘) |
j€S(aoia) €haeraold

for some \ € [0, 2].

3. EXPERIMENTSAND RESULTS

We conducted experiments on system designed for recog-
nizing command-and-control prompts, in a hands-free car
environment. The baseline system uses 39 dimensional fea-
tures - 13-dim MFCC with first and second order deriva-
tives. The system has 809 context dependent phones. To
get afeel for the best possible performance under the MLT
framework, we built a context dependent full-covariance
system, with 3644 full covariancegaussians. A singleMLLT
transform was then applied to this system, to obtain a diag-
onal covariance system. We aso applied MLT, with atotal
of 156 directions (¢ = 156). The results are shown in ta-
ble 1. Aswould normally be expected, the best performance
is obtained with the full-covariance system. The MLT sys-
tem performanceis better than the MLLT system.

Our next objective was to see if the improvements ob-
tained by MLT hold under various noise conditions. For this



System Command and | Far Field
Control(CC) cC
FullC 4,91 5.15
MLLT 6.29 6.37
MLT(156) 6.06 6.22

Table 1. String Error Rates for the full-covariance, MLLT
and MLT systems

System Near Field Microphone
O mph | 30 mph | 60 mph

FullC 4.76 4.03 5.70

MLLT 5.68 5.25 7.98

MLT(156) | 5.14 4.33 7.07
Far Field Microphone
FullC 5.30 4.56 7.75
MLLT 6.29 6.16 12.23
MLT(156) | 5.76 5.55 10.41

Table 2. String error rates for FULLC, MLT and MLLT
systems, under various microphone and noise conditions

purpose, we trained a new system with 5261 gaussians (and
809 context dependent phones), using multi style training,
with the car driving at 30mph, 60mph, and when station-
ary. The trained system was then tested under various noise
conditions, and for both near and far microphone locations,
for the similar command and control task. The recognition
results are shown in table 2. In this experiment, we find that
although a full-covariance system performs the best, MLT
improvesthe performance over MLLT in all the cases.

Figure 1 depictstheincreasein likelihood as the number
of directions is increased from 39 to 156, for the two sys-
tems described above. The exact number of directions that
areused in any system, isadesign parameter that affectsthe

memory and computational requirements (although marginally).

We believe that the performance of afull-covariance system
serves as a practical upper bound to the best that can be ob-
tained by using MLT technique, although, in some cases,
a better generalization may lead to a performance that is
better than the performance of a full-covariance system. It
is apparent from the plots that a further increase in likeli-
hood is possible, by increasing the number of directions (&
in equation 1). We expect that a few hundred directions is
al that would be needed to obtain most of the improvement
in performance. These details will be investigated and pre-
sented in afuture paper.
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Fig. 1. Log-likelihood increase with # of directions. Top
lineis for a 5261 gaussian model trained multi-style. Bot-
tom line is for a 3644 gaussian model trained with clean
data.
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