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ABSTRACT

Recently Heteroscedastic Discriminant Analysis (HDA) has
been proposed as a replacement for Linear Discriminant
Analysis (LDA) in speech recognition systems that use mix-
tures of diagonal covariance Gaussians to model the data.
Typically HDA and LDA involve a dimension reduction of
the feature space. A specific version HDA that involves no
dimension reduction, and is popularly known as Maximum
Likelihood Linear Transform (MLLT) is often used on the
feature space to give significant improvements in perfor-
mance. MLLT approximately diagonalizes the class covari-
ances, and in effect, tries to approximate the performance
of a full-covariance system. However, the performance of
a full-covariance system could in some cases be much bet-
ter than using MLLT-based diagonal covariance system. We
propose the method of Multiple Linear Transforms (MLT),
that bridges this gap in performance, while maintaining the
speed efficiency of a diagonal covariance system. This tech-
nique improves the performance of a diagonal covariance
system, over what could be obtained from HDA or MLLT.

1. INTRODUCTION

We propose a new technique - Multiple Linear Transforms
(MLT) - that uses a model-based approach to improve the
performance of a diagonal covariance recognition system
without incurring the penalty of a full-covariance system.
In some cases the performance may even be better than that
of the corresponding full-covariance system.

Linear Discriminant Analysis (LDA) [1, 2], and it’s gen-
eralization Heteroscedastic Discriminant Analysis (HDA) [3,
4], and it’s special case, the Maximum Likelihood Linear
Transform (MLLT) [6], are now being used in place of aug-
menting the cepstral features with their first, and second or-
der differences. Gales’ global transform for semitied covari-
ance matrices [5] is identical to MLLT but applied in the
model space. Demuynck [7] uses a minimum divergence
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criterion between posterior class distributions in the origi-
nal and transformed space to estimate an HDA matrix.

Under these approaches, the HDA or LDA techniques
are viewed as feature space transformations, that result in a
new set of features, which are then used recognition. Saon [8]
extensively analyzed various combinations of LDA, HDA,
and MLLT, and discovered that the application HDA for fea-
ture dimension reduction, followed by MLLT, resulted in
the best performance.

As shown by Kumar [4], MLLT can be viewed as a mod-
eling technique that places certain constraints on the gaus-
sian models. However the constraints are too restrictive,
since they assume that every gaussian can be diagonalized
by using the same linear transformation. Gales’ multiple
semi-tied covariances relaxes this assumption by assuming
that groups of Gaussians have the same diagonalizing trans-
form. The MLT method proposed here relaxes this assump-
tion even further by allowing each gaussian to have its own
diagonalizing transform. However, the number of param-
eters is kept small by allowing tying on a component by
component basis.

2. MULTIPLE LINEAR TRANSFORMS

Consider a classification problem where each input feature
vector, x 2 Rn, has to be classified into one of J classes -
with each class modeled by a single full-covariance Gaus-
sian. Under the MLT scheme the input vector x is assigned
a class according to the following algorithm. First x is mul-
tiplied by a n� k matrix � (k � n), resulting in

y = �
T
x: (1)

Each class j has a predefined subset Sj containing exactly
n distinct indices in the range 1; : : : ; k. yj is defined as the
n dimensional vector generated by choosing the subset S j

from y, and yj;l is the l’th component of yj (l = 1; : : : ; n).
�j is defined as a n � n submatrix of �, that is a concate-
nation of the columns of �, corresponding to indices in S j .
In addition, �j;l is defined as positive real number denoting
the variance of l’th component, of the j’th category.



Then the combination of � and Sj defines a unique lin-
ear transformation �

T

j
for each class j. Moreover, for a

given class, this linear transformation could be potentially
different from that for every other class. However, the like-
lihood of the observation x can still be computed as

Lj = 2 log j�j j �

nX
l=1

log�j;l �

nX
l=1

(yj;l � �j;l)
2

�j;l

: (2)

Then the observation x is assigned to that class, for which,
the corresponding value of Lj is maximum. Note that the
first two terms in the equation 2 do not depend on x, and
therefore, are precomputed, and stored, prior to classifica-
tion. The parameters of this MLT model are �, Sj , �j;l,
and �j;l. Another view of MLT is that each class is mod-
eled with an inverse covariance of the form �jDj�

T

j
where

columns of �j are drawn the columns of � using Sj and Dj

is diagonal1. Contrast this with semi-tied covariances where
the covariance is modeled in the form ADjA

T (where the
A’s could be shared across sets of classes and Dj is diago-
nal).

2.1. Parameter Estimation

We propose estimating the MLT parameters using maxi-
mum likelihood method. Given labeled data (x i; gi), if �
and Sj are known, then, the remaining parameters are cal-
culated as follows:

�j =

P
gi=j

�
T

j
xiP

gi=j
1

; (3)

�j =

P
gi=j

(�T
j
xi � �j)

2P
gi=j

1
: (4)

Now the likelihood of the data can be written as

L(�; fSjg) =

JX
j=1

Nj � (2 log j�j j �

nX
l=1

log(�j;l)); (5)

where �j , and �j implicitly depend on the Sj . Sj is not as-
sumed to be known apriori. Searching for the best S j (using
ML) is infeasible due to the combinatorial complexity. We
have investigated two possible heuristics to arrive at � and
corresponding Sj . One is a bottom-up clustering approach,
and the other is top-down splitting approach.

2.2. Clustering Approach

For each class j, compute

�xj =

P
gi=j

xjP
gi=j

1
(6)

�j =

P
gi=j

(xj � �xj)(xj � �xj)
TP

gi=j
1

(7)

1a similar factorization has been reported in [9].

where �xj is an n � 1 vector, and �j is a n � n matrix. let
Ej be the matrix containing all the eigenvectors of � j . Let
Ej;i be the i’th eigenvector of �j . An initial estimate of �
is generated as a n� (nJ) matrix that is a concatenation of
all the eigenvector matrices.

� = [E1 : : : EJ ] (8)

Also, the initial estimate Sj is given as

Sj = fn(J � 1) + 1; : : : nJg (9)

such that �j = Ej . �j and �j are computed from equations
3 and 4.

We define merging of two directions as the following
operations:

1. Two indices o and p are chosen that belong to fS jg

and satisfy the constraint that there is no index j for
which o, and p both belong to Sj .

2. All the entries in fSjg that equal o, are replaced by
the number p.

3. o’th column of � is removed.

4. 1 is subtracted from all the entries inSj that are greater
than o (to make sure that they still point to the correct
column of �).

Then o is said to be merged to p.
Now new estimate of � and fSjg are created, by apply-

ing the best merge. The best merge is defined as that choice
of permissible o and p that results in the minimum reduction
in the value of L(�; fSjg) (see equation 5).

Next, numerical algorithms such as conjugate gradients
are used to maximize L(�; fSjg), with respect to �. The
process of merging and optimization is repeated until, the
net decrease in L(�; fSjg) due to a merge is more than a
threshold Æ or until � has the desired size.

2.3. Top down Approach

An alternate scheme would be particularly useful when the
pool of directions is small relative to the number of classes.
We start with a pool of precisely n directions (recall n is the
dimension of the feature space) and estimate the parameters.
This is equivalent to estimating the MLLT transform except
that there is a parameter Sj , that is initialized to

Sj = f1 : : : ng8j: (10)

We then add another direction to the pool, and randomly
assign some Sj entries to this new direction. Then we max-
imize the likelihood, and reassign the entries in Sj to the di-
rection that results in the maximum gain in likelihood. This
procedure is very similar to K means clustering approach,
except for the minor difference that instead of the bounded
distance function, we are optimizing for the likelihood.



2.4. MLT with Mixture Models and HMMs

Speech Recognition systems, typically employ Hidden Markov
Models (HMMs) in which each node, or state, is modeled as
a mixture of Gaussians. The well known expectation maxi-
mization (EM) algorithm is used for parameter estimation in
this case. The techniques described in the previous section
easily generalize to this class of models, as follows.

The class index j is assumed to span over all the mixture
components of all the states. For example, if there are two
states, one with two mixture components, and the other with
three, then J is set to five. In any iteration of the EM algo-
rithm, 
j(t) is defined as the probability that the data point
at time t belongs to the j’th component. Then equations 3
and 4 are replaced with

�j =

P
N

t=1

j(t)�

T

j
xtP

N

t=1

j(t)

(11)

�j =

P
N

t=1

j(t)(�

T

j
xt � �j)

2P
N

t=1

j(t)

(12)

Similarly, equations 6 and 7 are replaced with

�xj =

P
N

t=1

j(t)xjP

N

t=1

j(t)

(13)

�j =

P
N

t=1

j(t)(xj � �xj)(xj � �xj)

TP
N

t=1

j(t)

(14)

The optimization is then performed as usual, at each step of
the EM algorithm.

2.5. Computational Speedup

Under the top down scheme, significant amount of savings
in computational cost can be obtained by focusing in one
direction at a time. It turns out that given k � 1 columns of
� the remaining column and the (possibly soft) assignments
of training samples to the classes the remaining column of
� can be obtained as the unique solution to a strictly convex
optimization problem. This suggests an iterative EM update
for estimating �. The so called Q function in EM for this
problem is given by

Q = const+
X
t;j


j(t)logpj(xt) (15)

= const�
1

2

X
t;j


j(t)

(
�2 log j�j j+

nX
l=1

log j�j;lj

)

�
1

2

X
t;j


j(t)

nX
l=1

(yj;l(t)� �j;l)
2

�j;l

Let a be a particular column of � (i.e. a direction). Let S(a)
be the list of states (or classes) that include direction a. Let

j�T
j
j = jcj;aa

T j where cj;a is the row vector of cofactors
associated with complementary (other than a) rows of �T

j
.

Let �j(a) be the variance of the direction a for state j (i.e.,
that component of �j). Differentiating equation 16 with re-
spect to a (leaving all other parameters fixed) and equating
the derivative to zero gives

0 =
X

j2S(a);t


j(t)

�
�2

cj;a

cj;aa
T

+ 2
a

�j(a)
(xt � �xj)(xt � �xj)

T

�

(16)
That is,

X
j2S(a);t


j(t)
cj;a

cj;aa
T

= a

X
j2S(a);t


j(t)
(xt � �xj)(xt � �xj)

T

�j(a)
:

(17)
Let

G =
X

j2S(a);t


j(t)
(xt � �xj)(xt � �xj)

T

�j(a)
: (18)

Then we have the fixed point equation for a

a =
X

j2S(a)


j

cj;aG
�1

cj;aa
T

; (19)

where

j =

X
t


j(t): (20)

We suggest a “relaxation scheme” for updating a.

anew = �aold+(1��)

0
@ X

j2S(aold)


j
cj;aoldG

�1

cj;aolda
T

old

1
A ; (21)

for some � 2 [0; 2].

3. EXPERIMENTS AND RESULTS

We conducted experiments on system designed for recog-
nizing command-and-control prompts, in a hands-free car
environment. The baseline system uses 39 dimensional fea-
tures - 13-dim MFCC with first and second order deriva-
tives. The system has 809 context dependent phones. To
get a feel for the best possible performance under the MLT
framework, we built a context dependent full-covariance
system, with 3644 full covariance gaussians. A single MLLT
transform was then applied to this system, to obtain a diag-
onal covariance system. We also applied MLT, with a total
of 156 directions (k = 156). The results are shown in ta-
ble 1. As would normally be expected, the best performance
is obtained with the full-covariance system. The MLT sys-
tem performance is better than the MLLT system.

Our next objective was to see if the improvements ob-
tained by MLT hold under various noise conditions. For this



System Command and Far Field
Control(CC) CC

FullC 4.91 5.15
MLLT 6.29 6.37
MLT(156) 6.06 6.22

Table 1. String Error Rates for the full-covariance, MLLT
and MLT systems

System Near Field Microphone
0 mph 30 mph 60 mph

FullC 4.76 4.03 5.70
MLLT 5.68 5.25 7.98
MLT(156) 5.14 4.33 7.07

Far Field Microphone
FullC 5.30 4.56 7.75
MLLT 6.29 6.16 12.23
MLT(156) 5.76 5.55 10.41

Table 2. String error rates for FULLC, MLT and MLLT
systems, under various microphone and noise conditions

purpose, we trained a new system with 5261 gaussians (and
809 context dependent phones), using multi style training,
with the car driving at 30mph, 60mph, and when station-
ary. The trained system was then tested under various noise
conditions, and for both near and far microphone locations,
for the similar command and control task. The recognition
results are shown in table 2. In this experiment, we find that
although a full-covariance system performs the best, MLT
improves the performance over MLLT in all the cases.

Figure 1 depicts the increase in likelihood as the number
of directions is increased from 39 to 156, for the two sys-
tems described above. The exact number of directions that
are used in any system, is a design parameter that affects the
memory and computational requirements (although marginally).
We believe that the performance of a full-covariance system
serves as a practical upper bound to the best that can be ob-
tained by using MLT technique, although, in some cases,
a better generalization may lead to a performance that is
better than the performance of a full-covariance system. It
is apparent from the plots that a further increase in likeli-
hood is possible, by increasing the number of directions (k
in equation 1). We expect that a few hundred directions is
all that would be needed to obtain most of the improvement
in performance. These details will be investigated and pre-
sented in a future paper.
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Fig. 1. Log-likelihood increase with # of directions. Top
line is for a 5261 gaussian model trained multi-style. Bot-
tom line is for a 3644 gaussian model trained with clean
data.
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