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ABSTRACT

Blind signal separation (BSS) is a recurrent problem in many multi-
sensors applications where observations can be modelled as mix-
tures of IV statistical independent source signals. In this paper we
propose the estimation of the orthonormal transformation matrix
Q in the case of whitened observations and a cost function based
on the fourth-order moments. Q is described as combination of
elementary Givens rotations and the optimization is carried out
jointly for all the rotations. When sub-sets of angles are optimized
separately the method reduces to the deflation approach which has
been proved to be globally convergent [1]. The joint estimation of
Givens rotation matrices has a computational complexity O(7N?)
and, compared to other adaptive BSS, simulations demonstrate that
it converges faster and achieves a better attenuation of cross-talks.

1. INTRODUCTION

Applications call for a blind signal separation (BSS) method for
memoryless interference systems that is computationally afford-
able, fast convergent, stable and reasonably accurate. All these
properties are equally important and, eventually, can be moder-
ately relaxed. BSS methods rely mainly on the hypothesis of sta-
tistical independence of the unknown sources [2]. BSS can be
decomposed into two-steps: the observations are first prewhitened
by a whitening matrix, and then an orthonormal matrix Q can be
separately calculated by constraining the source separation with
the minimization of appropriate cost-functions (orthogonal con-
trast functions). In this paper we limit ourselves to the case where
the prewhitening is known or estimated separately (e.g., by using
a LMS or RLS approach) and the rotation matrix Q has to be es-
timated. We will assume that the orthogonal contrast-function is
based on the fourth-order moments and we concentrate on the way
to estimate a matrix (Q by constraining to be an orthonormal trans-
formation.

In iterative methods Q can be estimated by constraining (at the
first order) the updating to result in a matrix Q that is orthonormal
[5]. The constraint can be explicitly added as Lagrange multipliers
[6] but a global optimization is not practical as computationally too
expensive [3]. In BSS matrix Q can be conveniently written as a
combinations of elementary Givens rotations [4]. In this paper we
propose the joint optimization of the Givens rotations (JOG) by
exploiting a computationally efficient updating which results in a
cost O(7TN?). The approach is similar to the deflation approach
proposed in [1] which has been proved to be globally convergent,
the main difference here lies in the way the updating is carried out.
Compared to the deflation approach, the BSS-JOG shows a faster

convergence and lower mutual interference from residual mixing.
Here this latter property is conveniently evaluated in term of signal
to interference ratio (SIR). The BSS-JOG is compared to EASI [5]
as it is a BSS benchmark based on the same contrast-function.

The paper is organized as follows. In the next section we recall
the model definitions and the optimization problem under study.
Then in Section 3 we describe the BSS-JOG algorithm; the de-
flation approach [1] is shortly recalled. In addition, it is shown
that the sources separation is a stationary point of JOG. The per-
formance analysis with respect to adaptive algorithms are in Sec-
tion 4. In addition, motivated by the need to reduce the cost for
the computations of trigonometric functions (e.g., by addressing a
look-up table), the performances are evaluated when the angles-
updating is quantized or fixed.

2. PRELIMINARIES

As a general model for BSS let the L observed signals be related
to the NV independent source signals {z;(k)}Y, by the L x N
memoryless channel matrix A:

w(k) = Ax(k) +n(k), kecZ D
where x(k) = [z1(k), ..., zn (k)]T and n(¢) is the additive Gaus-
sian noise. A is full-column rank, sources are zero mean non-
Gaussian with E[|z;(k)|?] = 1 and n(t) ~ NV(0, 0?1y ). Without
any loss of generality here we assume in the derivation that signals
are real-valued, L = N and ¢ = 0 (no-noise). The BSS can oper-
ate into two steps [5]. The first step prewhitens the observations ac-
cording to a whitening matrix B, it results in a set of uncorrelated
and normalized signals z(k) = Bw(k): E[z(k)z(k)T] = In.
Since E[w(k)w(k)T] = AAT the matrix B = (AAT)™1/2 or
equivalently A = B~ 1H where H is an orthonormal transforma-
tion. Therefore, the BSS reduces in finding the unknown Q from
the whitened observations z(k)

t=1t(Q) = Qz, @

An appropriate cost function based on high-order statistics can
separate the sources by forcing their independence, thus Q — RG
or equivalently t — Rx apart from a permutation matrix R and a
sign reversal for the sources.

Pre-whitening can be carried out in any of the known methods
and it is not dealt with here. We use the RLS approach as it does
not delay the BSS because of the ill-conditioning of F[w(k)w(k)T],
in addition the cost O(N?) is comparable with the estimation of
Q proposed below (Section 3).



3. ADAPTIVE ESTIMATION OF THE MATRIX Q

Let us suppose that all the sources have negative kurtosis (sub-
Gaussian). The source signals x can be recovered from z by es-
timating the N2 elements g; ; () = [Q (8)];; through the mini-
mization of the following contrast function [5]:

(o) = [zt Qw} z(zwe )

i=1
3)
where 8 denotes the vector of M = N(N — 1)/2 rotation an-
gles. The minimization of ¥ (8) will be attained by applying the
stochastic gradient algorithm, the actual function to be iteratively
minimized is

= Z £t (Q(9)). 4)

The iterative minimization of (4) does not guarantee that QQ
converges to a unitary matrix unless constraints are added (see e.g.,
[6], [7]). Here the unitary matrix Q is decomposed into the product
of M Givens rotations Py, :

N—-1 m

Q®) = [[ T Promm) (Bkim.m)) (5)

m=1n=1

where @ = [01...00]", k(m,n) =n+ 37 "4 and
Infl
cos O sin Oy
P (Hk) = Ln—n-1
— sin Oy, cos 0,

Iv—m

Provided that Q is decomposed into M Givens rotations that rotate
cach coordinate plane in the RM space, the rotations ordering is
not relevant due to the signal permutation ambiguity of BSS. The
ordering preserves the similarities with the deflation approach [1].
The rotations (5) are arranged as

N—1
Q@) =]] Gm (6)
m=1

where G, = H Pi(m.n) (Or(m,n))- Itis casy to prove that each

matrix G, has the following structure

G Om—1,M—m ’
Gm = gz,l Ol.JVI—m 9 (7)
Or—mm Im—m

where 0, , is a p X ¢ matrix whose elements are all zeros, G, is a
(m — 1) x m matrix, and g2, is a row vector such that G g, =
0,,—1.1. It follows then

m—gm< H G)ZZgﬁym (8)

p=m-+1

This structure is reminiscent of the one at the basis of the deflation
approach proposed in [1] (each matrix G, corresponds to one step
of the deflative procedure), the main difference here lies in the way
the angles @ are updated as shown below.

The gradient of v with respect to the parameters 0, (kK =
1..M)is

aqll(ﬁk) _ TaQ .
89k _4225 Z —)——z =1 59k 9

where r = [t?...t?\,f, z=[z..2y]" , and

I=k—1 =M

OP (0r) oP (6
H P (01) ( k) H P, () = ( k)Rk
1=k 41
071,—1
BP (6) B —sin Oy, o 1 cos Oy,
90k —cos by — sin 0
Or—m

here 0, = 0, denotes an X n matrix of zeros. The partition of

2Q jnto the product of three matrices (L. M , Ry) is the key
for the efficient implementation of the algorlthm whose complex-
ity is O(7N?) for each adaptation step (here we neglect the cost
for the evaluations of the trigonometric functions needed to build
Q(8++1) as they can be pre-calculated and simply addressed). In-
deed, eq. (9) can be rewritten as

ov _ r9Q, _ oy OP () AP (0x)

A = Riz = up 10
20, 00, B0, e = g —ve (10)
and the following recursive formulas hold:
u]; =r
{ uf =u}_Ppi 1<k<M (11a)
VN = Z
{ Vi1 =Prvie 1<k< M (11b)

For k = M, ..., 1 we first build the vectors v this step requires
M —1 matrix by vector products, where the matrices are Givens ro-
tation Px. The second step consists of computing the vectors s, =
%%ka (k =1, ..., M), notice that every vector sy, has only 2
non-zero elements. In the third step vectors uy are computed and
a total of M — 2 vector by P, matrix products are required. A final
step is needed in order to compute uf sy (k = 1, ..., M). The total
number of multiplications needed at each step is listed the table
below.

[ Step Number of multiplications ||
T.va 100 1)
2.5, = vy, | AM
3 un (0 2
4.9 (0x) =up sy, | 2M

The stochastic update algorithm for 8 reduces to

Oni1 =0, —50(6,) (12)

. T
where ¢(0,,) = {rf 9Q(6n) Zn,..., T30l 9Q(,) zn] is derived from

20, D001
(10) for 8 = 8,, and ¢ is the step-size. Notice that here the update
of the angle Hk(m.,,,) depends on all the outputs t, whilst in the
deflation approach it depends only on ¢,,.



Remark 1: Within the interval [0, 27) a stationary point for the
updating (12) is any vector 8 such that (see e.g., [1]):

E V)(é)} —0. (13)
Since
M =F {Z 4t36t (G)} =F [rT%z] =F [%f—;}

we conclude that the unique absolute minimum of W (8) does cor-
respond to a stable stationary point for the updating (12). This
proof does not ensure the global convergence of the iterative up-
dating since ¥ (8) might have local minima (as it can be analyt-
ically proved for N = 2). It should be recalled that when the
optimization of the contrast function (3) can be decoupled into the
optimization of each component as for [1] and [6], the steps in [8]
can be followed to show that for each of the components the stable
stationary points allows the recovery of one source. Since in this
case the optimization of the contrast function (12) is carried out
globally and not sequentially the proof of global convergence can-
not be easily extended in this case. Extensive numerical simula-
tions for N > 2 have never given evidences that the BSS-JOG can
be trapped in a local minimum implying any degradation of perfor-
mance with respect to other globally convergent methods (e.g., the
deflation approach as shown in Section 4). Moreover, for certain
pdt of source signals (for instance, for binary signals) the attractor
to the global minimum seems to be so strong that, in absence of
additive noise, algorithm (12) permits a complete separation of the
sources within less than one hundred adaptation steps.

Remark 2: Each of the 2x2 elements of the rotation matrix

1 Pk

(1+P )1/2 —Pk 1 ’
optimization is now carried out with respect to p=[p1, ..., par]” -
This results in a slightly different updating equation (i.¢., the only
term changed is OP (pr) /Opr) that could be suitably exploited
when the complex valued signals are considered.

Py, (k) can be re-written as Py, (pr) =

4. PERFORMANCE

The performance of the BSS-JOG are evaluated through numeri-
cal simulations. Since converge rate and residual interference af-
ter the demixing can be considered as design parameters in ap-
plications, performances are evaluated by comparing experimen-
tally these two parameters almost independently of the step-size 6.
Prewhitening is based on RLS algorithm as the convergence rate
is almost independent of the condition number (C/Na) of the co-
variance matrix E[w(k)w(k)T] = AAT, performance is mainly
due to the estimation of the orthogonal transformation Q(k). Let
C(k)= Q(k)B(k)A be the global mixing/demixing matrix eval-
uated during the k-th sample (or iteration as adaptive BSS is per-
formed by one iteration per time sample), the signal to interference
ratio (SIR) for the estimated source is:

max{|[C(k))en [}

21 [C(B)en|* — max{|[C(K)]en|*}

’ (14)
The SIR is a random variable that reflects the performance of a
specific BSS algorithm, the number of samples required for con-
vergence T (or the convergence speed 1/77¢) and the asymptotic

SIR¢(k) = 10log,,

accuracy S1R; = limyg—oo F[SIR¢(k)] can be evaluated exper-
imentally for varying step-size 6 and CNa. Here T; and SIR;
are estimated by fitting on the STR.(k) a piece-line function, in
practice:

~ kXSIRg/Te,fOI‘k<Tg )
STR (k) ~ { SIR,, for k > T (13)

where =z stands for the least square fitting. Recall that SIR, =
S1R¢(6) depends on the step 6§ and T; = T¢(6, CNa) depends
also on the C'N a mostly for the prewhitening stage.
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Fig. 1. Evolution of the elements of the 3 x 3 global matrix
C vs. iterations for BSS-JOG (upper figure) and deﬂatlon ap-
proach (lower figure). The sources are z; (k) \/_ \/_
fori = 1,2, 3, the mixing matrix is orthonormal (BSS after exact
prewhitening) and the adaptation step is 6 = 0.075.

Performance comparison with Deflation Approach [1]: Since
BSS-JOG is conceptually similar to the deflation approach in the
updating of the matrix Q except on the way the block-rotations
are updated, the two algorithm are compared with the same step 6.
Figure 1 shows the evolution of the elements of the global matrix
C(k) for N = 3 uniformly distributed sources and CNa = 1
(i.e., the mixing matrix is unitary). In this case the BSS-JOG out-
performs the deflation approach both in term of convergence speed
and asymptotic performance. This conclusion is confirmed from
Figure 2 where the average values of convergence 1'(6, CNa) is
represented with respect to STR(6) for 50 trials of N = 4 source
signals, each is a four equiprobable levels of pulse amplitude mod-
ulation (4PAM): z;(k) € {+1/+/5,4£3/+/5}. Since the use of
the same step 6 for the two algorithm could be misleading, this
plot has the advantage of making the comparison of the perfor-
mance almost independent on the step 6. For any value of SIR
the convergence speed of the deflation approach is lower than the
BSS-JOG. for any value of 7" the SIR of BSS-JOG outperforms
by more than 10dB in SIR. This is not surprising, the deflation ap-
proach is intrinsically sequential and a loss of performance in term
of convergence speed is expected with respect to JOG. However,
the advantage of the deflation scheme lies in the proof of conver-
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Fig. 2. Converge rate T vs. SIR for BSS-JOG and Deflation
Approach [1] for N = 4 4PAM sources.

gence of the iterative updating which still cannot be proved for
BSS-JOG.

Performance comparison with EASI [5]: The adaptive EASI is
shown here as it represents a good reference in term of convergence-
SIR-cost trade-offs even if it is understood that the RLS prewhiten-
ing of BSS-JOG tends to favor JOG algorithm. The comparison is
for N = 4 source signals with 4PAM as in the example above,
the condition numbers are CNa = {1, 10,100} and the range of
steps is 1072 < 6 < 1072, Here CNa = 1 for the mixing matrix
is intentionally chosen so as to reduce the EASI to a rotation-only
algorithm and thus maximize the convergence rate. Figure 3 shows
the comparison of converge rate 1" vs. asymptotic STR. The fast
prewhitening makes the BSS-JOG be independent of C'Na even
if a loss of approx. 4dB arises when compared with Figure 2. For
any value of the SIR the convergence of the BSS-JOG is faster
than EASI regardless of C'Na. A similar conclusion can be driven
when considering the SIR for a given convergence rate, the ad-
vantage can be quantified (for CNa = 1) as approx. 2-3dB in
SIR. Recall that the complexity of EASI is O(N?).

In real-time implementations trigonometric functions are pre-
computed and simply accessed (look-up table). The impact in
Givens rotations of the trigonometric function is shown in Figure
3 when the angles are quantized with angle-interval A. The angles
updating (12) is modified as follows:

quantization A: 8,11 = 6,, — A x round[8¢)(60,,)/A]
quantization B: 0,11 = 0, — A x sign[(6,)]
(16)

The quantization A represents the quantized angle-updating still
based on the step & (round[.] denotes the round to the nearest
integer) while in the quantization B the angle-updating is bounded
to be A and O(N?/2) multiplications by the step & are no more
necessary. Figure 3 confirms that the quantization B is affected by
low convergence for low A, and small STR when A is large. In
any case, for A = 1deg the convergence is reached into approx.
1000 samples. A suitable strategy to optimize the switching from
large A (at the first iterations) to small A (at final iterations) is not
discussed here but can be derived with the help of the performance
in Figure 3.
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Fig. 3. Converge rate T' vs. SIR for BSS-JOG and EASI for
four sources of 4PAM signals. BSS-JOG with angle-quantization:
quantization A for § = 1072 (empty symbols) and quantization B
(filled symbols).

5. CONCLUSIONS

In this paper we have demonstrated that in BSS the decomposition
of the rotation matrix into elementary Givens can be conveniently
exploited. When the rotation angles are optimized jointly as for
the proposed BSS-JOG the convergence rate and the residual in-
terference outperforms with respect to the iterative optimization
of the angles as in the deflation approach [1]. The BSS-JOG can
be efficiently implemented with a cost O(7N?). The sensitivity
analysis with respect to angle quantization shows that appropri-
ate optimization strategies can be tuned for real-time applications,
e.g., in mobile communication systems.

MATLAB codes for BSS-JOG are available at Astp.//www-
dsp.elet.polimi.it in TLC section.
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