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ABSTRACT

Multi-band speech recognition is powerful in band-limited
noise, when the recognizer of the noisy band, which is less
reliable, can be given less weight in the recombination pro-
cess. An accurate decision on which bands can be consid-
ered as reliable and which bands are less reliable due to cor-
ruption by noise is usually hard to take. In this article, we in-
vestigate a maximum-likelihood (ML) approach to adapting
the combination weights of a multi-band system. The Gaus-
sian Mixture Model parameters are kept constant, while the
combination weights are iteratively updated to maximize
the data likelihood. Unsupervised offline and online weights
adaptation are compared to use of equal weights, and ‘cheat-
ing’ weights where the noisy band is known, as well as
to the fullband system. Initial tests show that both ML-
weighting strategies show a robustness gain on band-limited
noise.

1. INTRODUCTION

In multi-band (MB) processing, the speech signal in the
spectral domain is split into several (non-overlapping) fre-
quency subbands. These frequency subbands are processed
separately for feature extraction, orthogonalization (e.g.
DCT) and, in our case, frame level phoneme probabilities
estimation. The estimated probabilities from each subband
recognizer are then recombined by a combination rule, such
as the weighted sum or product.

The strength of MB systems lies in the fact that possibly
occurring noise from one subband does not mix with neigh-
bouring subbands, as is usually the case. In fullband pro-
cessing, feature extraction and orthogonalization are both
carried out only once for the whole frequency domain which
results in a feature vector in which noise in any one subband
is spread over all features.

Experiments in recognition with missing data [2] have
shown that it is possible to significantly improve the recog-
nition task when noisy feature coefficients are ignored. A
similar finding, but this time based on human auditory pro-
cessing, was obtained by Fletcher in 1953 [4]. He showed
that humans are often able to extract sufficient residual in-
formation from clean frequency subbands when a consid-

erable part of the frequency domain is corrupted by noise.
MB processing permits us to process each frequency sub-
band separately, and thus to discard noisy subbands – if they
can be detected.

The extent to which a subband should be included in the
recognition task is controlled by the weighting factors used
in the recombination process. Each subband is normally
given a certain weight according to its estimated reliability.
These weights can be calculated in advance (i.e. in an offline
manner) and/or during recognition (i.e. online).

Different weighting schemes, such as mean square error,
mutual information [3] or signal-to-noise ratio (SNR) based
weights [7] can already be found in the literature. In this
article, we present a new maximum-likelihood (ML) based
weighting strategy for MB processing, which can be used
for unsupervised online adaptation. For this, in the frame-
work of Gaussian Mixture Expert/HMM systems [5], the
parameters of the Gaussian Mixture Model (GMM) experts
from each subband combination are fixed. Only the com-
bination weights for each subband model and recognition
unit, i.e. in our case phonemes, are iteratively updated.

In Section 2, the (online and offline) ML-weights adap-
tation for a GMM-based MB system is presented. Experi-
ments employing this new weighting function in clean and
noise-corrupted data are discussed in Section 3.

2. UNSUPERVISED ML ADAPTATION

Given an acoustic vector xt at time t and the whole set of
model parameters �, bj tells us the expert j for which xj is
clean1. We now decompose the state probability p(xtjqk;�)
into a weighted sum of subband GMM distributions, sum-
ming over all bj ; j = 1::J , with J = 2d where d is the
number of subbands:

p(xtjqk;�)=

JX

j=1

p(xtjbj ; qk;�)P (bj jqk;�) (1)

The parameters in (1) are the parameters �g of the
GMMs (means, variances and mixture weights) and the com-
bination weights for each subband model and each state, de-

1Time index t is dropped for xtj=xj for sake of clarity.



noted by wjk = P (bj jqk;�). The whole set of parameters
is thus � = f�g;wg.

In the following, we will consider the possibility of fast
adaptation of weightsw, while keeping all other parameters
�g fixed. The idea behind this is that all the subband clas-
sifiers have been optimized on clean speech. Thus, when
narrow band noise is present the classifiers of the noise-
contaminated bands should be downweighted to achieve op-
timal performance. The limited number of parameters to be
adapted here theoretically allows for fast adaptation. The
number of parameters to be adapted correspond roughly to
1% of the total number of fixed model parameters.

A separate GMM expert is trained on clean data for ev-
ery combination xj , j = 1::J , of data subbands. The prob-
abilities from these experts are combined in the same way
that each Gaussian component is usually combined into a
GMM.

p(xjqk ;�) =
X

j

p(xjmj ; qk;�)P (mj jqk) (2)

The adaptive expert weights are formed by combining
local weights estimated online during recognition with global
weights estimated offline during training (or equal weights).

2.1. Offline ML Expert Weights Estimation

In the case of fixed mixture component parameters, the usual
iterative EM estimation equations [1] for mixture weights
w
(m+1)
jk =P (m+1)(bj jqk) at iteration (m+1) are as follows:

w
(m+1)
jk =

1

T

1

P (qk)

TX

t=1

P (m)(bj ; qkjx
t;�g; w(m)) (3)

P (m)(bj ; qkjx
t)=

p(m)(xtjbj ; qk;�
g)P (m)(bj ; qk)P

j0;k0p(m)(xtjbj0 ; qk0 ;�g)P (m)(bj0; qk0)
(4)

The only difference here being that the mixture weights
are now fixed, and bj in place of the usual mixture index mj

tells us the expert j for which xj is clean, and its comple-
ment xj is noisy and should be ignored. This means we can
factorize the probability p(xjbj ; qk) into reliable and unreli-
able parts as follows

p(xjbj ; qk) = p(xj jbj ; qk;�)p(xj jxj ; bj ; qk) (5)

The unreliable factor p(xj jxj ; bj ; qk) in (5) can be ap-
proximated [2] with minimum variance by its expected value

�jk = E [p(xj jxj ; bj ; qk;�)] (6)

In the initial experiments reported here we have made
two simplifying assumptions. One is that �jk is a constant
independent of j and k, and therefore cancels out when (5)
and (6) are substituted into (4). Another is that in place of
all 2J experts, we use just one expert per subband, plus one
more for the fullband data.

2.2. Online ML Expert Weights Adaptation

We now only consider one iteration per time step and thus
drop the iteration index m, introducing a time index n. In
online adaptation, N � T frames are used to obtain a local
estimate w(n)

N =P (n)(bj jqk) for the weights, which is then
combined with the previous estimatew (n�1)=P (n�1)(bj jqk)
from the former time step (n�1) in a weighted sum as fol-
lows:

w(0) = offline weights

w(n) =(1� �) w(n�1) + � w
(n)
N (7)

with w
(n)
N = 1

N
1

P (qk)

Pn+N�1
ni=n

P (n)(bj ; qkjxni) (cf. (3)).

The �-value determines how fast the weights change
from one update to the next: � = 0 actually results in no
adaptation as the new weights are not taken into considera-
tion, while � = 1 is the other extreme when only the new
local weights are used in the next update.

3. EXPERIMENTS
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Fig. 1. Illustration of offline adapted weights for clean speech
(MFCC features).

Experiments were carried out on a test set of 100 ut-
terances from the Numbers95 database of connected num-
bers recorded over the telephone line. For tests on noise-
corrupted data, artificial band-limited (stationary) noise at
SNRs of 12 and 0 dB was added to each frequency sub-
band at a time, although due to filter characteristics there is
a slight noise leakage between bands.

Our MB system comprises 4 subbands. Two sets of
features were chosen: PLP (Perceptual Linear Prediction)
and MFCC features. GMM classifiers were (unsupervised)
trained on each set of features and for each frequency sub-
band (as well as the fullband). The MB system (recombi-
nation by weighted sum and product) is tested in the differ-
ent noise conditions employing the offline (3) and (4), and
online (7) adaptive ML-weights. Results are compared to
the same set-up using equal weights and ‘cheating’ weights,
which were set to zero for the noisy subband and equal for
the clean bands, as well as to the fullband GMM classifiers,
which were trained on the whole frequency domain. The of-
fline weights were calculated on a different set of 100 utter-
ances, corrupted with the respective noise. Online weights
were updated every N = 100 frames (1250 ms).
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Fig. 2. Illustration of offline adapted weights for noise in subband
1 (left) and 2 (right) (MFCC features).

3.1. Offline ML Expert Weights Adaptation
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Fig. 3. Illustration of offline adapted weights for noise in subband
3 (left) and 4 (right) (MFCC features).

noise fullband MB system w/ sum rule
SNR 12 dB WER weights WER cheat

equal 17.0clean 13.5
offline 15.2 -

equal 42.0band 1 64.4
offline 42.5 34.9
equal 24.6band 2 23.8
offline 21.6 21.9
equal 25.1band 3 25.6
offline 24.8 23.8
equal 21.4band 4 21.4
offline 23.8 22.4

Table 1. Word error rates (WER) on clean and band-limited
noise at 12 dB SNR on MFCC features for the fullband system and
the MB system of 5 bands (i.e. the 4 subbands and the fullband)
using equal weights and offline ML-weights.

In a multi-stream system using 4 subbands as input, we
would expect the new ML-weights to show a clear advan-
tage over equal weights when one of the bands is totally
corrupted by noise. Therefore, initial experiments were car-
ried out on band-limited noise (in one subband at a time).
We calculated the offline ML-weights for clean speech and
each of the noises using MFCC and PLP features, the first
of which can be seen in Figures 1, 2 and 3. Clearly, for
clean speech the weights depend on both the subband and
the respective phoneme and thus change from phoneme to
phoneme (Fig. 1). For noise-corrupted speech however, it
can be seen how the noisy band gets consistently down-
weighted as compared to the clean subbands (Fig. 2 and 3).
Results for MFCC features are given in Tabs. 1, 2 and 3,

noise fullband MB system w/ sum rule
SNR 0 dB WER weights WER cheat

equal 17.2clean 13.5
offline 15.2

equal 49.6band 1 85.7
offline 46.4 39.6
equal 32.4band 2 63.4
offline 22.6 24.6
equal 30.7band 3 51.6
offline 29.5 26.0
equal 29.7band 4 44.2
offline 29.2 25.6

Table 2. WER on clean and band-limited noises at 0 dB SNR
on MFCC features for the fullband system and the MB system of
5 bands (i.e. the 4 subbands and the fullband) using equal weights
and offline ML-weights in the sum rule.

for the PLP features in Tab. 4. As compared to the baseline
fullband systems (2nd columns), the MB systems already
show higher noise robustness when using equal weights (4 th

columns, upper number), with the exception of one noise
c. Only in the case of clean speech give the MB systems
weaker performance which is due to using 4 classifiers only
(cf. PLP features). Including the fullband classifier, as was
done for the MFCC features, already improves performance.
It can be expected that more competitive performance of the
MB system as compared to the fullband system in clean,
would easily be achieved by extending the MB system to
consider all possible combinations of subbands [8].

noise fullband MB system w/ product rule
SNR 0 dB WER weights WER cheat

equal 13.0clean 13.5
offline 13.8 -

equal 36.1band 2 63.4
offline 19.9 15.0
equal 42.8band 3 51.6
offline 23.6 17.4

Table 3. WER on clean and band-limited noises at 0 dB SNR
on MFCC features for the fullband system and the MB system of
5 bands (i.e. the 4 subbands and the fullband) using equal weights
and offline ML-weights in the product rule.

Comparing the new ML-weights to equal weighting in
noise-corrupted speech, shows that the MB system using
PLP features (Tab. 4), gains improved robustness for noise
in subbands 1, 2 and 4 whereas results in band 3 worsened
although control calculation of the data likelihood showed
that also for this subband the likelihood was increased. For
the MFCC features (Tabs. 1, 2 and 3), using the ML-weights
almost always gave higher noise robustness (with the excep-
tion of noise at 12 dB in subband 4) than equal weights, in
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noise fullband MB system w/ sum rule
SNR 0 dB WER weights WER

equal 21.1clean 9.3
offline 22.9

equal 51.4band 1 64.4
offline 44.7
equal 50.9band 2 75.7
offline 44.7
equal 65.8band 3 89.2
offline 72.7
equal 57.2band 4 90.7
offline 56.5

Table 4. WER on PLP features for the fullband system and the
MB system of 4 subbands using equal weights and offline ML-
weights in the sum rule.

two cases outperforming the cheating experiment (’cheat’).
(The results from the ’cheating’ experiments indicate to what
extent the MB system could be improved by an optimal
weighting strategy). Also for clean speech the ML-weights
increased performance on the MFCC features when using
the sum rule. (For sake of performance in clean speech, for
this set of features the MB system also included the full-
band). Due to the fullband always being corrupted by noise
and although the ML-weights were estimated to downweight
the fullband in noise, the overall gain on each noise was
less striking than for a pure MB system (cf. PLP features)
consisting of the 4 subbands only (which though performs
much worse in clean). Using the product rule, an improve-
ment with ML-weights in clean speech was not observed,
but considerable noise robustness was achieved with the
ML-weights for all band-limited noise cases (cf. Table 3),
also when the fullband was included.

noise offline online
� = 0 0.2 0.5 1

band 1 51.4 45.2 45.9 46.7
band 2 50.9 43.7 42.8 44.7
band 3 65.8 71.3 71.3 71.7
band 4 57.2 59.5 57.7 58.2

Table 5. WER on PLP features for the MB system using equal
and online ML-weights on band-limited noise (sum rule).

3.2. Online ML Expert Weights Adaptation

Next, we tested the online version of the ML-weights which
were calculated as described in (7). �= 0 in this case corre-
sponds to initial (i.e. not updated) equal weights. �= 1 only
takes the newly calculated values from the last 100 frames
into account and disregards former weight values.

It can be seen in Table 5 that for this kind of stationary
noise, lower �-values (� = 0.2 or 0.5) usually give better

results as they rely more on global weight estimates. It is
however expected that this approach should give more ben-
efit in case of non-stationary noise.

4. CONCLUSION
As could be seen in the experiments, MB speech recognition
is usually more robust to band-limited noise than a fullband
system. With an appropriate weighting strategy, such as the
ML-weights introduced in this article, the MB system could
be rendered even more competitive. For more realistic noise
conditions and to further improve MB performance in clean
speech, we have to either employ the so-called “full com-
bination” approach, in which all possible combinations of
subbands are considered [8], or change to the multi-stream
domain [6].

For both alternatives, the ML-weights can be as eas-
ily used as in MB processing showed so far in this article.
We thus plan on employing this new ML-weighting also
in the before mentioned frameworks. Moreover, for more
appropriately testing the online ML-weights adaptation we
will extend our experiments to include non-stationary band-
limited noise and different lengthsN for the update window.

We usually work in the framework of HMM/MLP hy-
brid systems, which we found to be more powerful than
Gaussian Mixture Expert/HMM systems. As in HMM/MLP
hybrid systems the likelihoods which are needed for ML-
weighting are not available, we need to consider how the
ML-weights adaptation could be derived directly for use
in the posterior-based approach of HMM/MLP hybrid sys-
tems.
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