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ABSTRACT

Partial updatingof LMS filter coeficientsis an effective method
for reducingthe computationaload and the power consumption
in adaptve filter implementationsThe SequentiaPartial Update
LMS algorithmis one popularalgorithmin this categyory. In [5]
afirst orderstability analysisof this algorithmwas performedon
wide sensestationarysignalsunderthe restrictve assumptiorof
small stepsize parametey:. The necessaryndsuficient condi-
tion derivedon y for corvergencein the meanwasidenticalto the
onefor guaranteeingtabilityin themeanof LMS. In [7] first order
sufficient conditionswere derived for stability without the afore-
mentionedsmall x assumption.The sufficient region of corver-
gencederivedwassmallerthanthatof regularLMS. In this paper
we establishthat for stationarysignalsthe sequentialalgorithm
corvergesin meanfor thesamevaluesof thestepsizeparametep
for whichtheregularLMS does.In otherwords,we shaw thatthe
conclusiondravn in [5] holdswithout the restrictve assumption
of smallu. We alsoderive suficient conditionsfor stability on p
for cyclo-stationarysignals.

1. INTRODUCTION

Partialupdatingof theLMS adaptve filter hasbeenproposedo re-
ducecomputationatostsandpowerconsumptiorj2, 3,4] whichis
quite attractve in the areaof of mobile computingandcommuni-
cations.Partial updatealgorithmshave applicationin mary fields
includingadaptve beamformingchannekequalizatiorin commu-
nicationsand space-timemodulation/coding. SequentialPartial
UpdateLMS algorithmis onesuchalgorithm. However, for this
algorithmtheoreticaperformance@redictionson convergencerate
andsteadystatetrackingerroraremoredifficult to derive thanfor
standardull updateLMS. Accuratetheoreticapredictionsareim-
portantasit hasbeenobsered that for the non-stationarysignal
scenariathe standard_MS conditionson the stepsize parameter
fail to ensureconvergenceof S-LMS.

In [5], conditionswerederived underthe assumptiorof small
step-sizeparametefy) which turnedout to be the sameasthose
for the standard_MS algorithm. We were interestedn investi-
gatingthe SequentiaPartial UpdateLMS Algorithm (S-LMS) un-
derlarge p conditionsfor which fastercorvergenceratescouldbe
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achieved. In [7], we derived a lessrestrictve sufficient condition
ony for stationarysignals.However, we wereunableto find anex-
ampleof a stationarysignalfor which regularLMS wasstablebut
S-LMSunstableWe alsopoint out thatthe motivatingexamplein
Section2 of [7] is incorrect.

This hasled usto look for moreaccuratéboundson p which
hold for stationarysignalsandarbitraryfixed sequencef partial
updates.Here,we prove conclusvely thatfor stationarysignals
first orderstability of LMS impliesfirst orderstability of S-LMS
without ary assumption®n g (Theorem2). We alsoextendthe
analysisin [7] to cyclo-stationarysignals. We shav that for the
cyclo-stationarycasethereexists somey suchthatuseof it in S-
LMS couldleadto divergenceevenif full updateLMS cornverges
for this .

Theorganizatiorof thepapelis asfollows. Firstin Section2, a
brief descriptiorof thesequentiapartialupdatealgorithmis given.
The algorithmwith arbitrarysequencef updateds analyzedor
the caseof stationarysignalsin Section3. Thisis followed by the
analysisof algorithmwith the specialcaseof alternateeven and
odd coeficient updatedfor cyclo-stationarysignalsin Section4.
In Section5 anexampleis givento illustratethe usefulnes®f the
boundson step-sizaderivedin Sectiond. Finally, conclusionsand
directionsfor futurework areindicatedin Section6.

2. ALGORITHM DESCRIPTION

Theblockdiagramof S-LMS for a N-tapLMS filter with alternat-
ing evenandodd coeficientupdatess shavn in Figurel
It is assumedhattheLMS filter is astandardFIR filter of even
length, N. For corvenience we startwith somedefinitions. Let
{z+} betheinputsequenceandlet {w; } denotethe coeficients
of theadaptve filter. Define
Wk = [wl,k W2k - ]T

X, =

WN,k

[k Tt Th—s - Th_nt1]”

wherethe termsdefinedabore arefor theinstantk. In addition,
Let d;, denotethe desiredresponse.ln typical applicationsdy. is
aknown training signalwhich is transmittedover a noisychannel
with unknavn FIR transferfunction.

In this paperwe assumethat d;, itself obeys an FIR model
givenby d, = W(ff,th + ni, whereW,,,; arethe coeficientsof
anFIR modelgivenby Wop: = [w1,0pt - - - wN,opt]T. Here{n}
is assumedo beazeromeani.i.d sequencé¢hatis independenof
theinputsequencgzy}.

For descriptionpurposesve will assumehatthefilter coefi-
cientscanbe dividedinto P mutually exclusive subsetf equal
size,i.e. thefilter length NV is a multiple of P. For convenience,



definetheindex setS = {1,2,..., N}. Partition S into P mu-
tually exclusive subset®of equalsize,Si, Ss,...,Sp. Definel;
by zeroingoutthe j** row of the identity matrix I if j ¢ S;. In
that case,l; X will have precisely% non-zeroentries. Let the
sentencéchoosings; atiterationk” standto mean‘choosingthe
weightswith theirindicesin S; for updateatiterationk”.

The S-LMS algorithmis describedasfollows. At a givenit-
eration,k, oneof the setsS;, i = 1,..., P, is chosenin a pre-
determinedashionandthe updateis performed.

wg,j + perrr,; if j€S;
Wht1,5 :{ wk,j- " otherwise (1)

wheree, = d, — Wi X;. The abore updateequationcan be
writtenin amorecompactorm in thefollowing manner

Wigr = Wi + perl; Xy, (2

In the specialcaseof even andodd updates,P = 2 and S;
consistsof all evenindicesand S, of all oddindicesasshavn in
Figurel.

We alsodefinethe coeficient errorvectoras

Vk = Wk - Wopt

which leadsto the following coeficient errorvectorupdatefor S-
LMS whenk is odd

(I — plo X1 X1 ) (I — ph Xe Xi )i+ (3)
u(I — pI X1 X1 )i Iy X + pne 1 T X

Vige =

andthefollowing whenk is even

= (I - phiXp1 Xipa)(I — pLXo X5 Vi + (4)
p(I = ph Xp1 X'y )i Do X + pngga It X

Vit2

3. ANALYSIS: STATIONARY SIGNALS

Assumingthat {z} is a WSSrandomsequenceywe analyzethe
corvergenceof themeancoeficienterrorvectorE [V;]. We male
the standardassumptionshat V3, and X, are mutually uncorre-
latedandthat X, is independenof X;_1 [1]. Theseassumptions
aresomavhatrestrictive but greatlysimplify theanalysis.For reg-
ular full updateLMS algorithmthe recursionfor E [V4] is given

by
EVit1] = (I - pR)E[V] (6)

wherel isthe N-dimensionaidentitymatrixandR = F [XkX,fI]
is theinput signalcorrelationmatrix. The necessarandsuficient
conditionfor stability of therecursionis givenby

0< n< 2/>\maz (6)

where\ .. is the maximumeigen-alue of the input signalcor
relationmatrix R.

Takingexpectationsinderthe sameassumptionasabore, us-
ing the independencassumptioron the sequencesXy, nx, the
mutualindependencassumptioron X}, andV;, andsimplifying
we obtainfor odd & whenS-LMS is operatingunderthe special
caseof alternateavenandodd updates

E[Visa] = (I - pbR)(I — ph R)E[VA] )

andfor evenk
E[Vit2] = (I — phh R)(I — pI2R)E[Vi] (8)

It canbe shavn thatunderthe abose assumptionsn Xy, V3, and
dr, the corvergenceconditionsfor evenandoddupdatesequations
areidentical. We thereforefocuson (7). Now to ensurestability of
(8),theeigevaluesof (I — uI> R)(I — ul1 R) shouldie insidethe
unitcircle. Wewill shaw thatif theeigevaluesof I—u.R lie inside
theunitcirclethensodotheeigewvaluesof (I—pI> R)(I—ul1 R).

Now, if insteadof just two partitionsof even andodd coefi-
cients(P = 2) wehave ary numberof arbitrarypartitions(P > 2)
thenthe updateequationscanbe similarly written asabove with
P > 2. Namely

P
B[Viir] = [[U - pLiR)E[VA] (©)

i=1

We will shaw thatfor ary arbitrarypartitionof ary size(P >

2); S-LMScorvergesin themeanif LMS cornvergesin themean(Theorem

2). ThecaseP = 2 follows asa specialcase.

We will shaw thatif R is a positive definitematrix of dimen-
sion N x N with eigevalueslying in the openintenal (0, 2)
then Hf;l(l — I;R) haseigervaluesinside the unit circle. I;,
i = 1,..., P is obtainedfrom I, the identity matrix of dimen-
sion N x N, by zeroingoutsomerowsin I suchthatzij‘i1 I; is
positive definite.

The following theoremis usedin proving the mainresultin
Theoren?.

Theorem 1 [6, Prob. 16,page 410] Let B beanarbitrary N x N
matrix. Thenp(B) < 1 if andonly if thete exists somepos-
itive definite N x N matrix A suc that A — B¥ AB is pos-
itive definite p(B) denotesthe spectal radiusof B (p(B) =
maxi,...,N |)\Z(B)|)

Theorem 2 Let R bea positivedefinitematrix of dimensionV x
N with p(R) = Amae(R) < 2 thenp([]/_,(I — LR)) < 1
whee I;, 1 = 1, ..., P are obtainedby zeoing out somerowsin
the identity matrix I sud that Ele I; is positivedefinite Thus
S-LMScorvemgesin themeanif LMScorvergesin themean.

Proof. Letxo € @ beanarbitrarynon-zerovectorof length V.
Letx; = (I — L;R)xi—1. Also,letP =[] (I — LiR).

Firstwewill shavthatx? Rx; < x| Rx; 1—ax® RI,Rx; 1,
wherea = 1 (2 — Apmaz(R)) > 0.

x'Rx; = x/,(I-RL)R(I —L;R)x;—:
XfI,lei_l - axf{,lRIini_l -

ﬂxf_lRL-qu;_1 + XzH_lRIiRIiRXi_l

whereg = 2 — a. If wecanshaw BRI;R — RI;RI; R is positve
semi-definitehenwe aredone.Now

BRI;R — RI;RI;R = BRI;(I — %R)LR

Sincef = (1 + Amaz(R)/2) > Amaz(R) it is easyto seethat
— %R is positive definite. Therefore,BRI1R — RI1RI1 R is
positive semi-definiteand

H H H
X; Rx; < x;"1Rxi—1 — ax;_RI;Rx;—1



Combiningthe above inequalityfor 7 = 1,..., P, we note
thatxZ Rxp < xf Rx, if x| RI;Rx;_1 > 0 for atleastone
1,1 =1,..., P. Wewill shaw by contradictionthatis indeedthe
case.

Suppos@ot,thenx” | RI;Rx;_; = Oforalls,i =1,..., P.
Since,ngIleo = 0 thisimpliesI; Rxo = 0. Thereforex; =
(I — IR)xo = x¢. Similarly, x; = x¢ forall 4,4 =1,...,P.
Thisin turnimpliesthatx{ RI;Rxo = 0 forall 4,7 = 1,..., P
whichis acontradictiorsincelll(Zf’:1 I;)R is apositive-definite
matrixand0 = 37 x§' RIi Rxo = x§ R(>_1._, Ii)Rxo # 0.

Finally, we concludethat

xOHPHRPxo = ngxP

< xéino

Sincexq is arbitrarywe have R — P¥ RP to be positive defi-
nite sothatapplyingTheoreml we concludethatp(P) < 1.

Finally, if LMS corvergesin themearwehave p(I—pR) < 1
or Amaz (uR) < 2. Which from the above proofis suficient for
concludinghatp(]_[le(]—pIiR)) < 1. ThereforeS-LMSalso
corvergesin themean. m|

4. ANALYSIS: CYCLO-STATIONARY SIGNALS

Next, we considerthe casewhen {z; } is cyclo-stationary We

limit our attentionto S-LMS with alternatesvenandodd updates
asshawn in Figurel. Let {z:} bea cyclo-stationarysignalwith

periodL. i.e, R;+r = R;. For simplicity, we will assumeL is

even. For the regular LMS algorithm we have the following L

updateequations

L—-1

E[VigL] = H(I — BRiya)E [Vi] (10)
=0
ford =1, 2, ..., L, in whichcasewewould obtainthefollowing

sufficient conditionfor cornvergence
0 < p <min{2/Xi mac} (11)

wherel; mq. is thelargesteigewalueof thematrix R;.
DefineAy = (I — ul1Ry) andBy = (I — pl2Ry) thenfor
thepartialupdatealgorithmthe 2L valid updateequationsare

L-—1

2
E[Viyr] = H Bosit1+dAzvita | E[Vi] (12)
i=0

ford=1, 2,...,Land

L—-1

2
E[Viyr] = H Aswit14dBavita | E[Vi] (13)

=0

ford=1, 2,...,L.

Let || A|| denotethe spectranorm Apq. (A AT) of thematrix
A. Thenfor ensuringhecorvergenceof theiteration(12) and(13)
asuficient conditionis

[|[Bi+14:|| <1 and ||Ai+1Bi|| <1 fori=1,2, ...,L (14)

Sincewe canwrite B;4+1A; as

Bit1Ai = (I — pR:) + pla(Ri — Riy1) + p’IRi11 11 R; (15)
andA;+1B; as

Aiy1Bi = (I — pRi) + pli(Ri — Rit1) + p’ i Rit1 I R; (16)

we have the the following expressionwhich upperboundsboth
| Bi+1Aill and|| As1Bi|

7 = uRill + pll Risr = Rill + p* || Riga || R | 17

Thistells usthatthe suficient conditionto ensureconvergenceof
both(12)and(13)is

|7 = uRill + pllRisr — Rill + p’|Ria [l[| Rl <1 (18)

fori. =1, ..., L.
If we malke theassumptiorthat
. 2
< min{——
s % {Ai,mam + Az,mln}
and

0; = ||Ri+1 — Ri|| < max{Ai min, Xi+1,min} =M

fori = 1, 2, ..., Lthen(18)translatego
1- 1 + N(sl + NZ)\i,ma:c)\i+1,ma;c <1 (19)
which gives

o (20

L
0<p<min{——mW——
" i=1 {Ai,mam)\i+l,mam

(20) is the suficient conditionfor the corvergenceof S-LMS.

5. EXAMPLE
The usefulnes®f the boundon step-siz€for the cyclo-stationary
casecanbe gaugedrom thefollowing example.Considera 2-tap

filter anda cyclo-stationary{z } with period2 having thefollow-
ing auto-correlatiomatrices

R = 5.1354 —0.5733 — 0.63813
o= —0.5733 + 0.6381¢ 3.8022

R = 3.8022 1.3533 + 0.3280¢
2 = 1.3533 — 0.32803 5.1354

For this choiceof R: and Rz, n: andsn. turn outto be 3.38 and
we have ||R1 — Rz|| = 2.5343 < 3.38. Therefore,R: and R;
satisfythe assumptiormadefor analysis. Now, 4 = 0.33 satis-
fies the condition for the regular LMS algorithmbut, the eigen-
valuesof B2 A; for this valueof p have magnituded.0481 and
0.4605. Sinceoneof the eigevalueslies outsidethe unit circle
(12) is unstablefor this choiceof . Onthe otherhand(20) gives
1 = 0.0254. For this choiceof u the eigevaluesof B2 A; turn
outto have magnitude$.8620 and0.8773. Hence(12) s stable.

We have plottedtheevolutiontrajectoryof the 2-tapfilter with
input signal satisfyingthe abore properties. We choseW,,: =
[0.4 0.5] in Figures2 and3. For Figure2 p waschoseraccording
to be0.33 andfor Figure3 p waschoserto be0.0254. Forsimula-
tion purposesve setd, = W2, Sk, + nj, whereSy, = [si, sp—1]"
is a vector composedf the cyclo-stationaryprocess{sx} with
correlationmatriceggivenasabove, and{n; } is awhite sequence,
with varianceequalto 0.01, independentf {s; }. We set{z} =
{sk} + {vr } where{v; } is awhite sequencewith varianceequal
t0 0.01, independendf {s}.



Sequential Partial Update LMS Algorithm

: Set of odd weight vectors (Y¥)
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Fig. 1. Block diagramof S-LMSfor thespecialcaseof alternating
even/oddcoeficientupdate
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Fig. 2. Trajectoryof wy,, andws for g = 0.33 for a 2-tap
adaptve filter in a cyclo-stationarysignalenvironmentdescribed
in Section5
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Fig. 3. Trajectoryof w1, andws x for p = 0.0254 for the same
adaptve systemasshavn in Figure2

6. CONCLUSION

We have analyzedhealternatingodd/even partialupdateLMS al-
gorithmandwe have derived stability boundson step-sizgparam-
eteru for wide sensestationaryandcyclo-stationarysignalsbased
on extremalpropertiesof the matrix 2-norm. For the caseof wide
sensestationarysignalswe have shavn thatif the regular LMS
algorithmconvergesin meanthenso doesthe sequentiaLMS al-
gorithmfor the generalcaseof arbitrarybut fixed orderingof the
sequence®f partial coeficient updates.For cyclo-stationarysig-
nalsthe boundsderived may not be the wealestpossiblebounds
but they do provide theuserwith ausefulsuficientconditionon
which ensuresonvergencein the mean. We believe the analysis
undertaknin this paperis thefirst steptowardsderiving concrete
boundson step-sizewithout making small 4 assumptions.The
analysisalsoleadsdirectly to an estimateof meanconvergence
rate.

In thefuture, it would beusefulto analyzepartialupdatealgo-
rithm, without the assumptiorof independensnapshotandalso,
if possible,performa secondorder analysis(meansquarecon-
vergence). FurthermoreasS-LMSexhibits poor corvergencein
non-stationargignalscenariog8] it is of interestto develop new
partialupdatealgorithmswith bettercorvergenceproperties.One
suchalgorithmbasedon randomizedoartial updatingof filter co-
efficientsis describedn [8].
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