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ABSTRACT

Partial updatingof LMS filter coefficientsis an effective method
for reducingthe computationalload andthe power consumption
in adaptive filter implementations.TheSequentialPartial Update
LMS algorithmis onepopularalgorithmin this category. In [5]
a first orderstability analysisof this algorithmwasperformedon
wide sensestationarysignalsunderthe restrictive assumptionof
small stepsizeparameter� . The necessaryandsufficient condi-
tion derivedon � for convergencein themeanwasidenticalto the
onefor guaranteeingstabilityin themeanof LMS. In [7] first order
sufficient conditionswerederived for stability without the afore-
mentionedsmall � assumption.The sufficient region of conver-
gencederivedwassmallerthanthatof regularLMS. In thispaper,
we establishthat for stationarysignalsthe sequentialalgorithm
convergesin meanfor thesamevaluesof thestepsizeparameter�
for which theregularLMS does.In otherwords,weshow thatthe
conclusiondrawn in [5] holdswithout the restrictive assumption
of small � . We alsoderive sufficient conditionsfor stability on �
for cyclo-stationarysignals.

1. INTRODUCTION

Partialupdatingof theLMS adaptivefilter hasbeenproposedto re-
ducecomputationalcostsandpowerconsumption[2, 3,4] whichis
quiteattractive in theareaof of mobilecomputingandcommuni-
cations.Partial updatealgorithmshave applicationin many fields
includingadaptive beamforming,channelequalizationin commu-
nicationsand space-timemodulation/coding. SequentialPartial
UpdateLMS algorithmis onesuchalgorithm. However, for this
algorithmtheoreticalperformancepredictionsonconvergencerate
andsteadystatetrackingerroraremoredifficult to derive thanfor
standardfull updateLMS. Accuratetheoreticalpredictionsareim-
portantasit hasbeenobserved that for the non-stationarysignal
scenariothe standardLMS conditionson the stepsizeparameter
fail to ensureconvergenceof S-LMS.

In [5], conditionswerederivedundertheassumptionof small
step-sizeparameter( � ) which turnedout to be the sameasthose
for the standardLMS algorithm. We were interestedin investi-
gatingtheSequentialPartialUpdateLMS Algorithm (S-LMS)un-
derlarge � conditionsfor which fasterconvergenceratescouldbe
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achieved. In [7], we deriveda lessrestrictive sufficient condition
on � for stationarysignals.However, wewereunableto findanex-
ampleof astationarysignalfor whichregularLMS wasstablebut
S-LMSunstable.Wealsopointout thatthemotivatingexamplein
Section2 of [7] is incorrect.

This hasled usto look for moreaccurateboundson � which
hold for stationarysignalsandarbitraryfixedsequenceof partial
updates.Here,we prove conclusively that for stationarysignals
first orderstability of LMS impliesfirst orderstability of S-LMS
without any assumptionson � (Theorem2). We alsoextendthe
analysisin [7] to cyclo-stationarysignals. We show that for the
cyclo-stationarycasethereexistssome� suchthatuseof it in S-
LMS couldleadto divergenceevenif full updateLMS converges
for this � .

Theorganizationof thepaperis asfollows. Firstin Section2,a
briefdescriptionof thesequentialpartialupdatealgorithmisgiven.
The algorithmwith arbitrarysequenceof updatesis analyzedfor
thecaseof stationarysignalsin Section3. This is followedby the
analysisof algorithmwith the specialcaseof alternateeven and
odd coefficient updatesfor cyclo-stationarysignalsin Section4.
In Section5 anexampleis givento illustratetheusefulnessof the
boundson step-sizederivedin Section4. Finally, conclusionsand
directionsfor futurework areindicatedin Section6.

2. ALGORITHM DESCRIPTION

Theblockdiagramof S-LMSfor a � -tapLMS filter with alternat-
ing evenandoddcoefficientupdatesis shown in Figure1

It is assumedthattheLMS filter is astandardFIR filter of even
length, � . For convenience,we startwith somedefinitions. Let�������

betheinput sequenceandlet
��	�

� ���

denotethecoefficients
of theadaptive filter. Define� ��� � 	���� ��	���� ��������	���� � �"!# � � � � � � ��$%� � � $�� ������� ��$&�(')� � !
wherethe termsdefinedabove arefor the instant * . In addition,
Let + � denotethe desiredresponse.In typical applications+ � is
a known trainingsignalwhich is transmittedover a noisychannel
with unknown FIR transferfunction.

In this paperwe assumethat + � itself obeys an FIR model
givenby + �,� �.-/�0�1 # ��243%�

where
� /�0�1 arethecoefficientsof

anFIR modelgivenby
� /�0�1 �.� 	 ��� /5061 �����7	 ��� /50�1 � ! . Here

� 3 � �
is assumedto bea zeromeani.i.d sequencethatis independentof
theinput sequence

�������
.

For descriptionpurposeswe will assumethat thefilter coeffi-
cientscanbe divided into 8 mutually exclusive subsetsof equal
size,i.e. thefilter length � is a multiple of 8 . For convenience,



definethe index set 9 �:�<;�=�>?=6������= � �
. Partition 9 into 8 mu-

tually exclusive subsetsof equalsize, 9 ��= 9 ��=6������= 9%@ . Define A 

by zeroingout the B 1
C row of the identity matrix A if BEDF 9 
 . In
that case,A 
 # �

will have precisely
� @ non-zeroentries. Let the

sentence“choosing9 
 at iteration * ” standto mean“choosingthe
weightswith their indicesin 9 
 for updateat iteration * ”.

TheS-LMS algorithmis describedasfollows. At a given it-
eration,k, oneof the sets 9 
 , G �H;�=��I����= 8 , is chosenin a pre-
determinedfashionandtheupdateis performed.	���')��� J��LK 	���� J(2 �%M�N� ��� � J if B F 9 
	 ��� J

otherwise
(1)

where M � � + �PO � -� # �
. The above updateequationcanbe

written in amorecompactform in thefollowing manner� ��'Q� � � � 2 �%M N� A 
 # �
(2)

In the specialcaseof even andodd updates,8 �R>
and 9 �

consistsof all even indicesand 9 � of all odd indicesasshown in
Figure1.

WealsodefinethecoefficienterrorvectorasS � � � �TO � /50�1
which leadsto thefollowing coefficient errorvectorupdatefor S-
LMS when * is oddS ��'7�U� V A O � A � # ��'Q� # -��')�XW V A O � A � # � # -�,W S �Y2

(3)� V A O � A � # �I'Q� # -��'Q� W 3 � A � # � 2 � 3 ��'Q� A � # ��')�
andthefollowing when * is evenS ��'7� � V A O � A � # ��'Q� # -��')� W V A O � A � # � # -� W S � 2

(4)� V A O � A � # �I'Q� # -��'Q�ZW 3 � A � # � 2 � 3 ��'Q� A � # ��')�
3. ANALYSIS: STATIONARY SIGNALS

Assumingthat
� � � �

is a WSSrandomsequence,we analyzethe
convergenceof themeancoefficienterrorvector [ � S � �

. Wemake
the standardassumptionsthat

S �
and

# �
are mutually uncorre-

latedandthat
# �

is independentof
# ��$%�

[1]. Theseassumptions
aresomewhatrestrictivebut greatlysimplify theanalysis.For reg-
ular full updateLMS algorithmthe recursionfor [ � S � �

is given
by [ � S ��')� �&�\V A O �%] W [ � S � �

(5)

whereA is the � -dimensionalidentitymatrixand] � [_^ # � # -�a`
is theinputsignalcorrelationmatrix. Thenecessaryandsufficient
conditionfor stabilityof therecursionis givenbyb,c � c > D�dfe(g�h (6)

where dfe(g�h is themaximumeigen-valueof the input signalcor-
relationmatrix ] .

Takingexpectationsunderthesameassumptionsasabove,us-
ing the independenceassumptionon the sequences

# � =�3 �
, the

mutualindependenceassumptionon
# �

and
S �

, andsimplifying
we obtainfor odd * whenS-LMS is operatingunderthe special
caseof alternateevenandoddupdates[ � S ��'7� �f�.V A O � A � ] W V A O � A � ] W [ � S � �

(7)

andfor even *[ � S ��'7�X���.V A O � A � ] W V A O � A � ] W [ � S �6�
(8)

It canbeshown thatundertheabove assumptionson
# � = S �

and+ � , theconvergenceconditionsfor evenandoddupdateequations
areidentical.Wethereforefocuson(7). Now to ensurestabilityof
(8), theeigenvaluesof

V A O � A � ] W V A O � A � ] W
shouldlie insidethe

unit circle. Wewill show thatif theeigenvaluesof A O �%] lie inside
theunit circlethensodotheeigenvaluesof

V A O � A � ] W V A O � A � ] W
.

Now, if insteadof just two partitionsof even andodd coeffi-
cients( 8 �i>

) wehaveany numberof arbitrarypartitions( 8.j >
)

thenthe updateequationscanbe similarly written asabove with8.k >
. Namely,

[ � S ��' @ ��� @l 
"m)� V A O � A 
 ] W [ � S � �
(9)

Wewill show thatfor any arbitrarypartitionof any size( 8_j>
); S-LMSconvergesin themeanif LMS convergesin themean(Theorem

2). Thecase8 �i>
followsasaspecialcase.

We will show that if ] is a positive definitematrix of dimen-
sion �onp� with eigenvalueslying in the open interval

V b =�> W
then q @
"mQ� V A O A 
 ] W

haseigenvaluesinside the unit circle. A 
 ,G �r;�=6�I����= 8 is obtainedfrom A , the identity matrix of dimen-
sion �snt� , by zeroingout somerows in A suchthat uwv
xm)� A 
 is
positive definite.

The following theoremis usedin proving the main result in
Theorem2.

Theorem 1 [6, Prob. 16,page410] Let y beanarbitrary �_nz�
matrix. Then { V y W c ;

if and only if there exists somepos-
itive definite �|nE� matrix } such that } O y - }Ty is pos-
itive definite. { V y W

denotesthe spectral radius of y ( { V y W �~���� ��� � � � � ��� d 
�V y W �
).

Theorem 2 Let ] bea positivedefinitematrixof dimension��n� with { V ] W � dfe(g6h V ] W c >
then { V q @
xm)� V A O A 
 ] W�W c ;

where A 
 , G ��;�=6������= 8 are obtainedby zeroing out somerowsin
the identitymatrix A such that u @
xm)� A 
 is positivedefinite. Thus
S-LMSconvergesin themeanif LMSconvergesin themean.

Proof: Let ��� F���� �
beanarbitrarynon-zerovectorof length � .

Let � 
 �.V A O A 
 ] W � 

$�� . Also, let � � q @
xm)� V A O A 
 ] W
.

Firstwewill show that � -
 ] � 
Q� � -

$�� ] � 

$�� O�� � -

$�� ] A 
 ] � 

$�� ,
where

� � �� V�> O d e(g6h V ] W�W k b
.� -
 ] � 
 � � -

$�� V A O ] A 
 W ] V A O A 
 ] W � 

$��� � -

$�� ] � 

$�� O�� � -

$�� ] A 
 ] � 

$�� O� � -
�$%� ] A 
 ] � 
�$%��2 � -
�$%� ] A 
 ] A 
 ] � 

$��

where
� �i> O��

. If wecanshow
� ] A 
 ] O ] A 
 ] A 
 ] is positive

semi-definitethenwearedone.Now� ] A 
 ] O ] A 
 ] A 
 ] � � ] A 
�V A O ;� ] W A 
 ]
Since

� �RV5;�2 d e(g6h V ] W D > W kLd e(g�h V ] W
it is easyto seethatA O �� ] is positive definite. Therefore,

� ] A � ] O ] A � ] A � ] is
positive semi-definiteand� -
 ] � 
 � � -
�$%� ] � 
�$%� O�� � -

$�� ] A 
 ] � 

$��



Combiningthe above inequality for G ��;�=6���I��= 8 , we note
that � -@ ] ��@ c � -� ] �%� if � -

$�� ] A 
 ] � 

$�� k b

for at leastoneG , G �w;�=6�I����= 8 . We will show by contradictionthatis indeedthe
case.

Supposenot,then� -

$�� ] A 
 ] � 
�$%��� b
for all G , G ��;�=6������= 8 .

Since,� -� ] A � ] � � � b
this implies A � ] � � ���

. Therefore,� � �V A O A � ] W �%� � �%� . Similarly, � 
�� ��� for all G , G �:;�=6������= 8 .
This in turn implies that � -� ] A 
 ] �%� � b

for all G , G ��;�=������6= 8
which is acontradictionsince ] V u @
"mQ� A 
 W ] is apositive-definite

matrixand
b � u @
"m)� � -� ] A 
 ] � � � � -� ] V u @
"mQ� A 
 W ] � �,�� b

.
Finally, weconcludethat� -� � - ] ����� � � -@ ] �)@c � -� ] � �
Since�%� is arbitrarywehave ] O � - ] � to bepositivedefi-

nitesothatapplyingTheorem1 weconcludethat { V � W c ;
.

Finally, if LMS convergesin themeanwehave { V A O �%] W c ;
or d e(g�h V �%] W c >

. Which from theabove proof is sufficient for
concludingthat { V q @
"mQ� V A O � A 
 ] W�W c ;

. Therefore,S-LMSalso
convergesin themean. �

4. ANALYSIS: CYCLO-STATIONARY SIGNALS

Next, we considerthe casewhen
� � � �

is cyclo-stationary. We
limit our attentionto S-LMS with alternateevenandoddupdates
asshown in Figure1. Let

� �����
bea cyclo-stationarysignalwith

period � . i.e, ] 
"'%� � ] 

. For simplicity, we will assume� is

even. For the regular LMS algorithm we have the following �
updateequations

[ � S ��'7� �f� �&$%�l
xm � V A O �%] 
"'�� W [ � S � �
(10)

for + ��;�=�>?=��I����= � , in whichcasewewouldobtainthefollowing
sufficient conditionfor convergenceb,c � c ~P �¡
 ��> D�d 
�� e�g6h � (11)

where d 

� e(g6h is thelargesteigenvalueof thematrix ] 

.

Define } �,��V A O � A � ] � W
and y �,��V A O � A � ] � W

thenfor
thepartialupdatealgorithmthe

> � valid updateequationsare

[ � S ��'%�¢�f�¤£¥,¦¨§¢©ªl 
xm � y � N 
x')�«'&� } � N 
"'&��¬­ [ � S �6�
(12)

for + ��;�=®>?=6������= � and

[ � S ��'%� �f�¤£¥,¦¨§¢©ªl 
xm � } � N 
x')�«'&� y � N 
x'&� ¬­ [ � S � �
(13)

for + ��;�=®>?=6������= � .
Let ¯�},¯ denotethespectralnorm d e�g6h V }°} - W

of thematrix} . Thenfor ensuringtheconvergenceof theiteration(12)and(13)
asufficient conditionis¯Iy 
"')� } 
 ¯ c ;

and ¯�} 
"'Q� y 
 ¯ c ;
for G ��;�=Q>±=²���I��= � (14)

Sincewecanwrite y 
"'Q� } 

asy 
"')� } 
%�\V A O �%] 
 W 2 � A ��V ] 
 O ] 
x')� W 2 � � A � ] 
x')� A � ] 


(15)

and } 
"'Q� y 

as} 
"')� y 
��\V A O �%] 
 W 2 � A �6V ] 
 O ] 
x')� W 2 � � A � ] 
x')� A � ] 


(16)

we have the the following expressionwhich upperboundsboth¯Iy 
x')� } 
 ¯ and ¯�} 
"'Q� y 
 ¯¯XA O �%] 
 ¯ 2 � ¯ ] 
"'Q� O ] 
 ¯ 2 � � ¯ ] 
x')� ¯�¯ ] 
 ¯ (17)

This tells usthatthesufficient conditionto ensureconvergenceof
both(12)and(13) is¯�A O �%] 
 ¯ 2 � ¯ ] 
"'Q� O ] 
 ¯ 2 � � ¯ ] 
x')� ¯�¯ ] 
 ¯ c ;

(18)

for G �¤;�=(�6�I�(= � .
If wemake theassumptionthat� c ~P �¡
 � >d 
�� e(g6h 2 d 

� e 
´³ �

andµ 
 � ¯ ] 
x')� O ] 
 ¯ c ~���� � d 
�� e 
"³ = d 
x')��� e 
´³ ���·¶ 

for G �¤;�=®>?=²������= � then(18) translatesto; O � ¶ 
 2 � µ 
 2 � � d 
�� e(g6h?d 
"'Q��� e(g6h c ;

(19)

whichgives b,c � c �~P �¡
"mQ� � ¶ 
 O µ 
d 
�� e(g6h d 
"'Q��� e(g6h � (20)

(20) is thesufficient conditionfor theconvergenceof S-LMS.

5. EXAMPLE

The usefulnessof the boundon step-sizefor the cyclo-stationary
casecanbegaugedfrom thefollowing example.Considera2-tap
filter andacyclo-stationary

�6� � �
with period

>
having thefollow-

ing auto-correlationmatrices] � � ¸ ¹ ��;6º ¹ » O b � ¹�¼ º�º O b � ½�º�¾±; GO b � ¹�¼ º�º°2 b � ½�º�¾±; G º±� ¾ b >�> ¿
] �U� ¸ º±� ¾ b >�> ;�� º ¹ º�º°2 b � º<>�¾ b G;�� º ¹ º�º O b � º�>�¾ b G ¹ ��;6º ¹ » ¿

For this choiceof ] �
and ] �

,
¶À�

and
¶?�

turn out to be
ºÀ� º�¾

and
we have ¯ ] � O ] � ¯ �Á>±� ¹ º » º c º±� º�¾

. Therefore,] �
and ] �

satisfythe assumptionmadefor analysis.Now, � � b � º�º
satis-

fies the condition for the regular LMS algorithmbut, the eigen-
valuesof y � } �

for this valueof � have magnitudes
;�� b » ¾À; andb � » ½ b ¹ . Sinceoneof the eigenvalueslies outsidethe unit circle

(12) is unstablefor this choiceof � . On theotherhand(20) gives� � b � b > ¹ » . For this choiceof � the eigenvaluesof y � } �
turn

out to have magnitudes
b � ¾�½�> b

and
b � ¾ ¼�¼ º . Hence(12) is stable.

Wehaveplottedtheevolutiontrajectoryof the2-tapfilter with
input signal satisfyingthe above properties. We chose

� /5061 �� b � » b � ¹ � in Figures2 and3. For Figure2 � waschosenaccording
to be

b � º�º
andfor Figure3 � waschosento be

b � b > ¹�» . For simula-
tion purposesweset + � � � -/50�1 9 � 2Â3 �

where 9 � �.� Ã � Ã ��$�� � !
is a vector composedof the cyclo-stationaryprocess

��Ã � �
with

correlationmatricesgivenasabove,and
�63��<�

is awhitesequence,
with varianceequalto

b � b ;
, independentof

��Ã � �
. Weset

�6� � �����Ã � �®2Â�6Ä � �
where

�6Ä � �
is awhitesequence,with varianceequal

to
b � b ;

, independentof
��Ã � �

.
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LEGEND:

Sequential Partial Update LMS Algorithm
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Fig. 1. Block diagramof S-LMSfor thespecialcaseof alternating
even/oddcoefficientupdate
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in Section5
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6. CONCLUSION

Wehaveanalyzedthealternatingodd/evenpartialupdateLMS al-
gorithmandwe have derivedstabilityboundson step-sizeparam-
eter � for widesensestationaryandcyclo-stationarysignalsbased
on extremalpropertiesof thematrix

>
-norm.For thecaseof wide

sensestationarysignalswe have shown that if the regular LMS
algorithmconvergesin meanthensodoesthesequentialLMS al-
gorithmfor thegeneralcaseof arbitrarybut fixedorderingof the
sequenceof partial coefficient updates.For cyclo-stationarysig-
nalsthe boundsderived maynot be the weakestpossiblebounds
but they doprovidetheuserwith ausefulsufficientconditionon �
which ensuresconvergencein themean.We believe theanalysis
undertaken in this paperis thefirst steptowardsderiving concrete
boundson step-sizewithout making small � assumptions.The
analysisalso leadsdirectly to an estimateof meanconvergence
rate.

In thefuture,it wouldbeusefulto analyzepartialupdatealgo-
rithm, without theassumptionof independentsnapshotsandalso,
if possible,perform a secondorder analysis(meansquarecon-
vergence). Furthermore,asS-LMSexhibits poor convergencein
non-stationarysignalscenarios[8] it is of interestto developnew
partialupdatealgorithmswith betterconvergenceproperties.One
suchalgorithmbasedon randomizedpartialupdatingof filter co-
efficientsis describedin [8].
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