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ABSTRACT whereN andC' are the number of elements (pixelsyirandz, re-
spectively. A pool ofN-dimensional blocks is made from a search

In this paper, a fast algorithm is proposed for block motion \yingo in z, against whose membesswill be matched. A total
estimation for video sequences. The proposed algorithm is provenys p —  _ N + 1 of N-dimensional vectors;,i = 1,2 B
) ) )

to be equivalent to exhaustive search.
In a multiresolution approach, it uses mathematically derived
threshold to prune search candidates whose low-resolution ver-

ey

may be extracted from by

. . . 7,1 Zi
sions are too far from the low resolution version of the block for Zl R it
which a best match is sought. yi = ] = . , i=1,2,...,B.
Experimental results show that speed ups of around 36, com- : :
pared to full search, may be achieved, for some typical test video Yi,N ZitN—1

sequences. This is the fastest full-search-equivalent motion esti-
mation reported in the literature to date, and has speed ups compaTypically, in video coding, only a portion of thed® vectors are
rable to inexact fast motion estimation methods. searched. Let us assume that the range of seawchaiudes only
the K vectorsy;,i = G,G+ 1,...,G + K — 1, whereG is the
index of the first block in the search window.

In an exhaustive search, the distance betweemdy;, i =
G,G+1,...,G+ K — 1is computed, ang; with the smallest
distance is selected:

1. INTRODUCTION

Block motion estimation is the most common method of estima-
tion of motion in video sequences [1]. In this method, each frame
in a video sequence is partitioned into small non overlapping blocks.

For each of these blocks, a search is conducted in its neighborhood for i=G t0 G+ K —1
in the previous decoded frame, to find the best match based on a N
mean absolute difference (MAD) or a mean squared error (MSE) di = |lx —yill5 = Z lzs — yi P
criteria. =
Block motion estimation is the essential part of all video com- end
pression standards so far. It is also the most time-consuming part I := argmin d;
3

of most video compression algorithms. Several methods have been

developed to reduce this computational burden, most of which

achieve this computation reduction at the expense of lower pre-

cision, i.e., the lower complexity search does not necessarily find Wherel|-||» represents thg-norm for vectors [2]. Normallyp = 1

the best match that would be found by a full search. This results ©F P = 2 are used for norms, whege= 1 corresponds to com-

in a higher residual error and a larger distortion. In this paper, we Puting mean absolute difference (MAD), apd= 2 corresponds

propose a fast search method that finds the absolute best match at@ computing mean squared error (MSE). _

significantly reduced computational cost compared to a full search. ~For any given value of, in line 2 of the above algorithm, we
To simplify the notation, in what follows, we will assume the call the _computa_tions required for one term in the summation, as

signals discussed are all one-dimensional. The two-dimensionalOn€ basic operation Hence, the exhaustive search requires’

case may easily be derived in a similar fashion. basic operations. _ _

Let us denote the block for which the best match is sought ~ In the next section, we will present an algorithm that, for typ-
by x, and denote the frame in which a search is conducteg. by ical cases, finds the indekof the best match using far less com-
Vectorsx andz may be represented by putations.

r1 zZ1
. 2 2. THE PROPOSED METHOD
x = ) , and z = )

: : In its single-resolution form, the proposed method consists of three
N 20 steps:



. Using a bounded operatex, compute transformed ver-
sions ofx andy;’s:

X Ax,

Vi Ay;.
Computel; = ||x — 7|5 for G <i <G+ K — 1.
Prune any candidatg; for whichd; > D, whereD is a
theoretically determined threshold.

4. Computel; = ||x—y;||5 for the remaining candidates, and
find the candidate with smallegj.

Step 4 is just similar to a full search, except that it is only con-

2.
3.

2.2. The Operator

Now, consider the linear operatéx : RY —s %%, represented
by the matrix

lixm Oixm O1xm

Oi1xm lixm O1xm
A, =

lem 01><m 11><m

NN
m

Iﬂxﬂ ®11><m7
m " m

ducted for candidates that survive the pruning conducted in stepwherel and0 represent matrices with all elements equal to 1 and

3.

0, respectively, ant represents the Kronecker product. This op-

For the proposed algorithm to be effective, steps 1 and 2 shoulderator, replaces every. elements in any vector i" with a sin-

require significantly less computations compared to a full search,

and the number of pruned candidates should be large.

In what follows, for any given bounded operathr we intro-
duce the threshol®. Then, we focus our attention on a particular
form of A which results in effective pruning, and for which steps
1 and 2 may be done with relatively small number of operations.

2.1. The Pruning Threshold

Consider a linear operatax : ®¥ —s ®"'. Norm of A, denoted
by ||A]|, is defined [2, 3] as

[1]]

x#£0 ||X||

[Ax] _

1]

[A|l = sup
x#0

Therefore, for ank € R, we have
llAx]| < [JA]l[lx]|- @

Now, as before, let us denote the index of the best matdh Bis

means that fo <i < G + K — 1, we have
lIx —yrll < llx = yill- (2

Then,

lA[ 1% =yl

IA[l 1% = yall,

1% = y:ll = |Ax — Ay

IA

©)

gle element equal to the sum of the original elements. This
operation is in fact a decimation operation [4] and generates a
lower-resolution vector from anjv-dimensional vector. Jensen’s
inequality [5] may be used to show that for the above operator,
lAmll, =m 7 .
For this operator, step 1 of the proposed algorithm, may be done
very efficiently by noting thay;’s have significant overlap, and
one does not need to apply summation for each element of every
y: separately. Instead, one may apply a low-pass filtering, o
obtain its low-passed versiaon by:

m—1
Zi = E Zitis
=0

and then, obtaiy;’s by appropriate sampling from. Computa-
tion of z usually needs much less operations than step 2.
For step 2, we note that becadsandy;’s have lengthV/m,
therefore, computing; = ||x — ¥||% requires onlyl /m the num-
ber of basic operations required for computihg= ||x — y:|[5.
Note that the above operatar,,, whenm is a power of 2, is in
fact an operator that computes tNg¢m low frequency coefficients
of the Haar transform of a vector [6]. Similar operators, for other
types of transformations, may also be used. These transformations,

where the first inequality is due to (1), and the second inequality is for example, may be other types of wavelet transform, with better

due to (2). Note that (3) provides us with the thresholds
D;=|Alllx—-yil, i=GG+1,...,G+K —1,
and the best matcy; should satisfy
|x—y:71|<D;, i=GG+1,...,G+K—1.

This means that any vectgy that does not satisfyx — y;|| < D;

for any 4, cannot be the best match, and may be removed from
further consideration. Even though any value afiay be used to
computeD;, to achieve the greatest pruning, we would liRe to

be as small as possible. Let us define

(4)

J = argmin d;.

For the type of operators that we will usk closely follows|| A ||d;
for differents’s, and therefore, a small; usually indicates a small
||A|d;, and thereforeD; is a reasonable threshold. Also,Jif is

energy compaction properties. However, they usually require more
overhead computations.

3. THE MULTIRESOLUTION APPROACH

In the proposed approach, if we choose a smatiecomputingd;
requires more computation, but findidgcorresponds to a higher-
resolution search. So, we may adopt a multi-resolution approach,
where we begin with a larger, for examplemm = N, and we
conduct a low resolution pruning with little computation. Then
increasen, and conduct the pruning only on the remaining candi-
dates. This approach may be done at different values,afntil
the final stage, at which a full-resolution search is conducted.

As mentioned earlier, the threshal?; may be computed for
anyi in (4). In experiments for motion estimation, it was found
that at the lowest resolution, i.e., first stage of pruning, it was more

the index of the image block at zero displacement at the previouseffective to use = .J'. In the following stages, = .J are used for

frame, we usually expedD;: to be small. In a multiresolution
algorithm that will be introduced later, we will use both of these
thresholds.

computingD;.
The proposed multiresolution motion estimation method algo-
rithm is shown is Table 1. Several additional techniques have been



Table 1. The proposed fast motion estimation algorithm.

FastMotionEstimatiof¥,, , z,—1, N, W, p)

C :=length(z,)
M :=2
T :=log,, N
mo = 1
Zo = Znp—1
fort:=1toT
mye = Mt
Zt = Pmi Zt—l
end
J:=1]
forj:=1to C— N +1 insteps of N
Jr =]
Lt := {min(j — W,1),...,max(j + W,C)}
x:=F; z,
Xg (=X
fort:=1t0T
Xt = Qumy Xe—1
end
Er =[x —yillp )
D:= (A~} BEr)*
forall: € Lr
g =Hin Zp
di := |Z7,1 — Fi1l
if di >D then Ly_1 := Lp \ {l}
end
fort: =T —1 downto O
forall: € Ly
}_ii,t = Hi,mi Zt
di = ||xe — Fiellp
end
J¢ 1= argmin d;
1€ Lyg
ift>0
if Jo # Jey1
Y = FJt z
Ei:=|x—yul}
if Et > Et+1
Et = Et+1
Jt = Jt.:,_l
end
else
Et = Et+1
end
D= |An|b B
Lt—l = Lt\{l : dl > D}
if |[Li—1] =1 or D =0 then break
end
end
J:=[J Ji
end
returnJ

used in this algorithm to reduce computations and avoid repeated
computation of identical values. The inputs to this algorithm are:
the current frame,,, the previous frame,, 1, block sizeN, off-
set of the search windowy’, and the parameter for the norm
being used (e.g. 1 for MAD or 2 for MSE).

In this algorithm, lowpass filtered versions »ffor different
resolutions are obtained by a recursive formula that compzites
from z;_; using the matrix

P = [Pisf](c—m+1)x(c—%+1)

where

o =i 2 i, g B
Pij 0  otherwise
Similarly, x; is computed fronx;_; using matrix

Qn =1

iz

<N ®Lixm.
Matrix F'; is a fetch operator that construst§rom z,, :

F, = [ Onx(i-1) Inxn Onx(c-nN—it1) ]Nx(,"

Matrix H; .., is the operator that construcys,: by appropriate
sampling ofz;, and is defined by

H;mn= [ O%X(i—l) S%XN 0%x(C—N—i+1) ]ﬁxo,

where
S=Ix,~®[1 0 0 --- 0] .

In this algorithm, fort = T', m; equalsN, andxr andy; r each
have only one element, and

di = ||Rr — §i,7llp = &1 — Fin P

needs to be compared wifh;. The powerp may be removed by
noticing that at this resolution instead of comparjjg— (|5 =

|Z1 — §i,1|” with D/, we may comparéz; — ;1| with D},{p.
Also, whenp > 1, we still may avoid the powey computation
in all resolutions, if we note that, again, using Jensen’s inequality,

it may be shown that

vveRrY, vl <allvil, ®)
where
p—1l
a=Nr .
Then, we have
IX =9l < allx—¥1llp (6)
< allAnllllx = yrllp (7

where (6) is due to (5), and (7) is due to (1). This gives the thresh-
old D; = aD; for ||x — 1|1 Obviously,

Ix -yl < D; (8)

is a looser bound compared i& — ¥/, < D;, hence resulting
in less effective pruning. However, conducting search using (8)
requires less computations.



Table 2. Number of candidates tested at each resolution, total
number of basic operations, and ratio of total number of basic oper-

ations to that of exhaustive search, for the proposed fast algorithm

and exhaustive search.

t Block Number of Candidates Searched
Size Proposed Algorithm]| Exhaustive Search
4 1x1 11,441,196 0
3 2% 2 3,912,397 0
2 4x4 920,769 0
1 8 x 8 239,933 0
0| 16 x16 91,246 11,441,196
Total Number
of Basic Ops 8.05 x 107 2.93 x 10°
Ratio of # of
Basic Ops 0.0275 1.0000

4. EXPERIMENTAL RESULTS

The two-dimensional version of algorithm of Table 1 was used for
finding the best match for each block in each frame of video se-

quences, from a search conducted in its neighborhood in the pre-[

vious frame.

For the first 30 frames of the gray-scale, 8 bit-per-pi3é{) x
288, “salesman” video sequence, with blocks of sigex 16, and
search area d83 x 33 (W=16), andp = 2, the proposed method

gives an speed up of more than 36 compared to a full search. Table

2 shows the number of low-resolution searches conducted at eac
resolution, along with the total number of basic operations.
Note that in this experiment, no coding was conducted on the

In this approach, assuming all pixels have positive values, the
overhead is equivalent to the overhead of findigin our ap-
proach. In one experiment, for the “salesman” sequence, an speed
up of approximately 7.6, compared to full search, is reported in [7].
This is in contrast to the 36 times speed up of the method proposed
in this paper.

6. CONCLUSIONS

This paper proposes the fastest full-search-equivalent motion esti-
mation method reported in the literature for MAD and MSE crite-
ria. The proposed algorithm is theoretically shown to be equivalent
to full search. It uses the information from low resolution match-
ing to prune the number of candidates needed to be searched at full
resolution. For a typical case, the proposed method has an speed
ratio of approximately 36 to 1 compared to a full search. This
speed up is roughly around the same order of magnitude obtained
by inexact motion estimation methods.
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