
A FAST MOTION ESTIMATION ALGORITHM
EQUIVALENT TO EXHAUSTIVE SEARCH

Mohammad Gharavi-Alkhansari

Tarbiat Modares University,
Intersection of Jalal-Al-Ahmad St. and Chamran Highway, Tehran, Iran

Email: gharavi@modares.ac.ir

ABSTRACT

In this paper, a fast algorithm is proposed for block motion
estimation for video sequences. The proposed algorithm is proven
to be equivalent to exhaustive search.

In a multiresolution approach, it uses mathematically derived
threshold to prune search candidates whose low-resolution ver-
sions are too far from the low resolution version of the block for
which a best match is sought.

Experimental results show that speed ups of around 36, com-
pared to full search, may be achieved, for some typical test video
sequences. This is the fastest full-search-equivalent motion esti-
mation reported in the literature to date, and has speed ups compa-
rable to inexact fast motion estimation methods.

1. INTRODUCTION

Block motion estimation is the most common method of estima-
tion of motion in video sequences [1]. In this method, each frame
in a video sequence is partitioned into small non overlapping blocks.
For each of these blocks, a search is conducted in its neighborhood
in the previous decoded frame, to find the best match based on a
mean absolute difference (MAD) or a mean squared error (MSE)
criteria.

Block motion estimation is the essential part of all video com-
pression standards so far. It is also the most time-consuming part
of most video compression algorithms. Several methods have been
developed to reduce this computational burden, most of which
achieve this computation reduction at the expense of lower pre-
cision, i.e., the lower complexity search does not necessarily find
the best match that would be found by a full search. This results
in a higher residual error and a larger distortion. In this paper, we
propose a fast search method that finds the absolute best match at a
significantly reduced computational cost compared to a full search.

To simplify the notation, in what follows, we will assume the
signals discussed are all one-dimensional. The two-dimensional
case may easily be derived in a similar fashion.

Let us denote the block for which the best match is sought
by x, and denote the frame in which a search is conducted byz.
Vectorsx andz may be represented by

x =

2
664

x1
x2
...
xN

3
775 ; and z =

2
664

z1
z2
...
zC

3
775 ;

whereN andC are the number of elements (pixels) inx andz, re-
spectively. A pool ofN -dimensional blocks is made from a search
window in z, against whose membersx will be matched. A total
of B = C�N +1 of N -dimensional vectorsyi; i = 1; 2; : : : ; B
may be extracted fromz by

yi =

2
664

yi;1
yi;2

...
yi;N

3
775 =

2
664

zi
zi+1

...
zi+N�1

3
775 ; i = 1; 2; : : : ; B:

Typically, in video coding, only a portion of theseB vectors are
searched. Let us assume that the range of search inz includes only
theK vectorsyi, i = G;G+ 1; : : : ; G+K � 1, whereG is the
index of the first block in the search window.

In an exhaustive search, the distance betweenx andyi, i =
G;G+ 1; : : : ; G +K � 1 is computed, andyi with the smallest
distance is selected:

for i = G to G+K � 1

di := kx� yik
p
p =

NX
j=1

jxi � yi;j j
p

end
I := argmin

i
di

wherek�kp represents thep-norm for vectors [2]. Normally,p = 1
or p = 2 are used for norms, wherep = 1 corresponds to com-
puting mean absolute difference (MAD), andp = 2 corresponds
to computing mean squared error (MSE).

For any given value ofp, in line 2 of the above algorithm, we
call the computations required for one term in the summation, as
onebasic operation. Hence, the exhaustive search requiresKN
basic operations.

In the next section, we will present an algorithm that, for typ-
ical cases, finds the indexI of the best match using far less com-
putations.

2. THE PROPOSED METHOD

In its single-resolution form, the proposed method consists of three
steps:

1. Using a bounded operatorA, compute transformed ver-
sions ofx andyi’s:

�x = Ax;

�yi = Ayi:

2. Compute�di = k�x� �yik
p
p for G � i � G+K � 1.

3. Prune any candidateyi for which �di > D, whereD is a
theoretically determined threshold.

4. Computedi = kx�yik
p
p for the remaining candidates, and

find the candidate with smallestdi.

Step 4 is just similar to a full search, except that it is only con-
ducted for candidates that survive the pruning conducted in step
3.

For the proposed algorithm to be effective, steps 1 and 2 should
require significantly less computations compared to a full search,
and the number of pruned candidates should be large.

In what follows, for any given bounded operatorA, we intro-
duce the thresholdD. Then, we focus our attention on a particular
form ofA which results in effective pruning, and for which steps
1 and 2 may be done with relatively small number of operations.

2.1. The Pruning Threshold

Consider a linear operatorA : <N 7�! <N
0

. Norm ofA, denoted
by kAk, is defined [2, 3] as

kAk = sup
x6=0

kAxk

kxk
= sup

x6=0

k�xk

kxk
:

Therefore, for anyx 2 <N , we have

kAxk � kAkkxk: (1)

Now, as before, let us denote the index of the best match byI. This
means that forG � i � G+K � 1, we have

kx� yIk � kx� yik: (2)

Then,

k�x� �yIk = kAx�AyIk � kAk kx� yIk

� kAk kx� yik; (3)

where the first inequality is due to (1), and the second inequality is
due to (2). Note that (3) provides us with the thresholds

Di = kAkkx � yik; i = G;G+ 1; : : : ; G+K � 1; (4)

and the best matchyI should satisfy

k�x� �yIk � Di; i = G;G+ 1; : : : ; G+K � 1:

This means that any vectoryj that does not satisfyk�x��yjk � Di

for any i, cannot be the best match, and may be removed from
further consideration. Even though any value ofi may be used to
computeDi, to achieve the greatest pruning, we would likeDi to
be as small as possible. Let us define

J = argmin
i

�di:

For the type of operators that we will use,�di closely followskAkdi
for differenti’s, and therefore, a small�di usually indicates a small
kAkdi, and therefore,DJ is a reasonable threshold. Also, ifJ 0 is
the index of the image block at zero displacement at the previous
frame, we usually expectDJ0 to be small. In a multiresolution
algorithm that will be introduced later, we will use both of these
thresholds.

2.2. The Operator

Now, consider the linear operatorA : <N 7�! <
N
m , represented

by the matrix

Am =

2
664
11�m 01�m � � � 01�m
01�m 11�m � � � 01�m

...
... � � �

...
01�m 01�m � � � 11�m

3
775
N
m
�N

= IN
m
�N
m

 11�m;

where1 and0 represent matrices with all elements equal to 1 and
0, respectively, and
 represents the Kronecker product. This op-
erator, replaces everym elements in any vector in<N with a sin-
gle element equal to the sum of the originalm elements. This
operation is in fact a decimation operation [4] and generates a
lower-resolution vector from anyN -dimensional vector. Jensen’s
inequality [5] may be used to show that for the above operator,

kAmkp = m
p�1

p :

For this operator, step 1 of the proposed algorithm, may be done
very efficiently by noting thatyi’s have significant overlap, and
one does not need to apply summation for each element of every
yi separately. Instead, one may apply a low-pass filtering onz, to
obtain its low-passed version�z, by:

�zi =

m�1X
j=0

zi+j ;

and then, obtain�yi’s by appropriate sampling from�z. Computa-
tion of�z usually needs much less operations than step 2.

For step 2, we note that because�x and�yi ’s have lengthN=m,
therefore, computing�di = k�x��yik

p
p requires only1=m the num-

ber of basic operations required for computingdi = kx� yik
p
p.

Note that the above operatorAm, whenm is a power of 2, is in
fact an operator that computes theN=m low frequency coefficients
of the Haar transform of a vector [6]. Similar operators, for other
types of transformations, may also be used. These transformations,
for example, may be other types of wavelet transform, with better
energy compaction properties. However, they usually require more
overhead computations.

3. THE MULTIRESOLUTION APPROACH

In the proposed approach, if we choose a smallerm, computing�di
requires more computation, but findingJ corresponds to a higher-
resolution search. So, we may adopt a multi-resolution approach,
where we begin with a largem, for examplem = N , and we
conduct a low resolution pruning with little computation. Then
increasem, and conduct the pruning only on the remaining candi-
dates. This approach may be done at different values ofm, until
the final stage, at which a full-resolution search is conducted.

As mentioned earlier, the thresholdDi may be computed for
any i in (4). In experiments for motion estimation, it was found
that at the lowest resolution, i.e., first stage of pruning, it was more
effective to usei = J 0. In the following stages,i = J are used for
computingDi.

The proposed multiresolution motion estimation method algo-
rithm is shown is Table 1. Several additional techniques have been

Table 1. The proposed fast motion estimation algorithm.

FastMotionEstimation(zn; zn�1; N;W; p)

C := length(zn)

M := 2

T := logM N

m0 = 1

�z0 := zn�1

for t := 1 to T

mt := M t

�zt := Pmt �zt�1

end
J := []

for j := 1 to C �N + 1 in steps ofN
JT := j

LT := fmin(j �W; 1); : : : ;max(j +W;C)g

x := Fj zn

�x0 := x

for t := 1 to T

�xt := Qmt �xt�1

end
ET := kx� yJT k

p
p

D :=
�
kANk

p
p ET

� 1

p

for all i 2 LT
�yi;1 := Hi;N �zT
�di := j�xT;1 � �yi;1j

if �di > D then LT�1 := LT n fig

end
for t := T � 1 downto 0

for all i 2 Lt
�yi;t := Hi;mt �zt
�di := k�xt � �yi;tk

p
p

end
Jt := argmin

i2Lt

�di

if t > 0

if Jt 6= Jt+1
yJt := FJt z

Et := kx� yJtk
p
p

if Et > Et+1

Et := Et+1

Jt := Jt+1
end

else
Et := Et+1

end
D := kAmtk

p
p Et

Lt�1 := Lt n fi : �di > Dg

if jLt�1j = 1 or D = 0 then break
end

end
J := [J Jt]

end
returnJ

used in this algorithm to reduce computations and avoid repeated
computation of identical values. The inputs to this algorithm are:
the current framezn, the previous framezn�1, block sizeN , off-
set of the search windowW , and the parameterp for the norm
being used (e.g. 1 for MAD or 2 for MSE).

In this algorithm, lowpass filtered versions ofz for different
resolutions are obtained by a recursive formula that computes�zt
from �zt�1 using the matrix

Pm = [pi;j](C�m+1)�(C�m
M

+1)

where

pi;j =

�
1 if j = i; i + m

M
; i + 2m

M
; : : : ; i+ (M�1)m

M
0 otherwise

:

Similarly, �xt is computed from�xt�1 using matrix

Qm = IN
m
�N
m

 11�M :

Matrix Fi is a fetch operator that constructsx from zn:

Fi =
�
0N�(i�1) IN�N 0N�(C�N�i+1)

�
N�C

:

Matrix Hi;mt is the operator that constructs�yi;t by appropriate
sampling of�zt, and is defined by

Hi;m =
�
0N
m
�(i�1) SN

m
�N 0N

m
�(C�N�i+1)

�
N
m
�C

;

where

S = IN
m
�N
m

�

1 0 0 � � � 0
�
1�m

:

In this algorithm, fort = T , mt equalsN , and�xT and�yi;T each
have only one element, and

�di = k�xT � �yi;T k
p
p = j�x1 � �yi;1j

p

needs to be compared withDi. The powerp may be removed by
noticing that at this resolution instead of comparingk�x� �yik

p
p =

j�x1 � �yi;1j
p with DJ0 , we may comparej�x1 � �yi;1j with D1=p

J0
.

Also, whenp > 1, we still may avoid the powerp computation
in all resolutions, if we note that, again, using Jensen’s inequality,
it may be shown that

8v 2 <N ; kvk1 � �kvkp (5)

where
� = N

p�1

p :

Then, we have

k�x� �yIk1 � �k�x� �yIkp (6)

� �kAmkpkx� yIkp (7)

where (6) is due to (5), and (7) is due to (1). This gives the thresh-
oldD0

i = �Di for k�x� �yIk1. Obviously,

k�x� �yIk1 � D0
i (8)

is a looser bound compared tok�x � �yIkp � Di, hence resulting
in less effective pruning. However, conducting search using (8)
requires less computations.

Table 2. Number of candidates tested at each resolution, total
number of basic operations, and ratio of total number of basic oper-
ations to that of exhaustive search, for the proposed fast algorithm
and exhaustive search.

t Block Number of Candidates Searched
Size Proposed Algorithm Exhaustive Search

4 1� 1 11,441,196 0
3 2� 2 3,912,397 0
2 4� 4 920,769 0
1 8� 8 239,933 0
0 16 � 16 91,246 11,441,196

Total Number
of Basic Ops 8:05� 107 2:93 � 109

Ratio of # of
Basic Ops 0.0275 1.0000

4. EXPERIMENTAL RESULTS

The two-dimensional version of algorithm of Table 1 was used for
finding the best match for each block in each frame of video se-
quences, from a search conducted in its neighborhood in the pre-
vious frame.

For the first 30 frames of the gray-scale, 8 bit-per-pixel,360�
288, “salesman” video sequence, with blocks of size16� 16, and
search area of33 � 33 (W=16), andp = 2, the proposed method
gives an speed up of more than 36 compared to a full search. Table
2 shows the number of low-resolution searches conducted at each
resolution, along with the total number of basic operations.

Note that in this experiment, no coding was conducted on the
motion compensation residuals, and for each block, the search was
conducted on the previous original frame.

It is interesting to mention that if at the top level witht = T ,
we usedDJ rather thanDJ0 for finding the pruning threshold, the
obtained speed up would be approximately 26 instead of 36.

5. COMPARISON WITH OTHER METHODS

In this section, we compare the proposed method with the fast
method reported by Li and Salari [7]. In their method, which is
similar to a fast method for vector quantization, also known as Tri-
angular Inequality Elimination [8, 9], the inequalities

kxk � kyIk � kx� yIk

kyIk � kxk � kx� yIk

kx� yIk � kx� yik

are combined to yield

kxk � kx � yik � kyIk � kxk+ kx� yik:

First, kyjk is computed forj = 1; 2; : : : ; K, as an overhead.
Then, anyj for whichkyjk does not satisfy the following inequal-
ities is rejected

kxk � kx� yik � kyjk � kxk+ kx� yik;

whereyi is any previously tested candidate.

In this approach, assuming all pixels have positive values, the
overhead is equivalent to the overhead of finding�zT in our ap-
proach. In one experiment, for the “salesman” sequence, an speed
up of approximately 7.6, compared to full search, is reported in [7].
This is in contrast to the 36 times speed up of the method proposed
in this paper.

6. CONCLUSIONS

This paper proposes the fastest full-search-equivalent motion esti-
mation method reported in the literature for MAD and MSE crite-
ria. The proposed algorithm is theoretically shown to be equivalent
to full search. It uses the information from low resolution match-
ing to prune the number of candidates needed to be searched at full
resolution. For a typical case, the proposed method has an speed
ratio of approximately 36 to 1 compared to a full search. This
speed up is roughly around the same order of magnitude obtained
by inexact motion estimation methods.

7. REFERENCES

[1] H. G. Musmann, P. Pirsch, and H.-J. Grallert, “Advances in
picture coding,”Proceedings of the IEEE, vol. 73, pp. 523–
548, Apr. 1985.

[2] G. H. Golub and C. F. Van Loan,Matrix Computations. Bal-
timore, MD: The Johns Hopkins University Press, 3rd ed.,
1996.

[3] C.-T. Chen,Linear System Theory and Design. New York:
Holt, Rinehart and Winston, Inc., 1984.

[4] A. V. Oppenheim and R. W. Schafer,Discrete-Time Signal
Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.

[5] T. Cover and J. Thomas,Elements of Information Theory.
New York: John Wiley and Sons, Inc., 1991.

[6] A. K. Jain, Fundamentals of Digital Image Processing. En-
glewood Cliffs, NJ: Printice Hall, Inc., 1989.

[7] W. Li and E. Salari, “Successive elimination algorithm for
motion estimation,”IEEE Transactions on Image Processing,
vol. 4, pp. 105–107, Jan. 1995.

[8] W. Li and E. Salari, “A fast vector quantization encoding
method for image compression,”IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 5, pp. 119–123,
Apr. 1995.

[9] S. H. Huang and S. H. Chen, “Fast encoding algorithm
for VQ-based image coding,”Electronics Letters, vol. 26,
pp. 1618–1619, Sept. 1990.

