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ABSTRACT

We present extensions to our previous work in modelling
dynamical processes. The approach uses an information
theoretic criterion for searching over subspaces of the past
observations, combined with a nonparametric density char-
acterizing its relation to one-step-ahead prediction and un-
certainty. We use this methodology to model handwriting
stroke data, specifically signatures, as a dynamical system
and show that it is possible to learn amodel capturing their
dynamics for use either in synthesizing realistic signatures
and in discriminating between signatures and forgeries even
though no forgeries have been used in constructing the mod-
el. This novel approach yields promising results even for
small training sets.

1. INTRODUCTION

Resal-world dynamical processes often exhibit characteris-
tics which makethem extremely difficult to model with con-
ventional tools. Specifically, nonlinear effects and nongaus-
sian randomness can cause canonica modelling methods to
fail or at least to require problem-specific modification (hu-
man intervention) to mitigate such difficulties. In genera
there is a fundamental tradeoff in the capacity of a model
and its ease of use. For example, linear methods have great
advantages in computation but lack the modelling capaci-
ty to consistently handle problems which fall outside the
linear-quadratic-gaussianregime. Neural network based ap-
proacheslack a completemodel of uncertainty, while HMM
methods are not well suited to continuous state dynamics.
Nonparametric approaches possess the modelling capacity;
however, such capacity must be controlled (e.g. viadimen-
sionality reduction).

The approach we present, based on nonparametric mod-
elling of a subspace of the data, chosen via an information-
theoretic criterion, allows us to exploit the modelling capac-
ity of a nonparametric density estimate while reducing the
computational burden. This gives us the flexibility to de-

scribe complex, possibly multimodal uncertainty and non-
linear system dynamicswhileretaining control over the com-
putational complexity. Such a system description has an in-
trinsic notion of randomness and uncertainty (not restricted
to a“noise-like” interpretation) which questions the role of
“prediction” as a useful metric, but nevertheless character-
ize many dynamical systems.

2. DYNAMICAL SYSTEM MODEL DESCRIPTION

We hypothesize our dynamical systems to be of the form
depicted in Figure 1. In such systems the state is fully cap-
tured by thelocal past of the process. The conditional distri-
bution p(zy|xk—_1,... ,zr_nN) iSby assumption stationary.
It should be noted that such a description includes both s
tationary and nonstationary processes (e.g. random walk).
Furthermore, we hypothesize that the intrinsic dimensional -
ity of thisstateislessthan V. That is, there exists a (possi-
bly vector-valued) function GG such that

p(k|G(TR—1,... ,Tr_N))

is stationary and GG is sufficient, i.e. the mutual information
satisfies
yTh-nN}) = Iz, G(Tp—1, ...

I(zg, {zp—1,... yTh—N))

This G correspondsto the informative subspace of the delay
coordinate space {z, zx_1,... ,Tx_nN }. Thearbitrariness
of G dlows an arbitrary data manifold — our assumption is
only that its dimensionis small

Degpite this underlying assumption, it should be noted
that as discussed in [1] useful information can be extracted
by such amodel even when the true process does not quite
satisfy the conditions. For example, a process which has a
dependence longer than N will cause any lost information
to be attributed to randomnessin the signal. Note also that
although G isin some way capturing the relational struc-
ture of the data and p its uncertainty, the two are intimate-
ly related. Note (@ need not equal G exactly; it need only
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Fig. 1. Dynamical System Model

be equivalent to G' up to a bijective transformation, which
then determines the relationship of p and p. Thus, repre-
sentational capacity in the model p can reduce the required
complexity of G.

3. TRAINING NONPARAMETRIC DYNAMICAL
MODELS

The mutual information between = and any statistic G is
bounded as follows [2]

L@, {@past}) > I(xaé'(xpast))

H(z) + H(G'(xpast)) — H(z, G'(xpast))

with equality if & issufficient. Asdescribedin [1] our train-
ing method maximizes I(z, GG). We construct a density es-
timate of p(x, G(zpqst)) asfollows:

P =3 3K (x _hX’“>

k=1
where X, = [z, G(zg—1,...)], K isakernel function (in
our case a unit-variance Gaussian) and h isthe kernel band-
width [3]. Once G islearned this will become the distribu-
tion in our model.

Such adensity can be used to estimate the entropy gra-
dient [4, 5]. The method of [5] has severa nice properties,
such as a computational advantage and a term which dis-
courages saturation which led us to select it for use. We
then use this estimate to train our statistics, which we pa-
rameterize as single-layer network structures, i.e. the i**
statistic is given by

(D

éi(:nk_l, .- ,xk_N) =0 (Z wi,jxk—j) (2)
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where the w; ; are the network weights and o (-) is the hy-
perbolic tangent function.

This simple form of G does not severely limit its capa-
bilities; as discussed above, the modelling power of p com-

pensates for lack of flexibility in G. In addition, this tech-
niqueis easily extended to multilayer perceptrons, allowing
more complex functional approximation if desired.

4. GENERATIVE MODELS

Having captured the relation of the past to subsequent data
points, our model can be used to synthesize sample reaiza-
tions of the process from any point in time. However, the
nonparametric nature of the modelled density raises the is-
sue of how these points should be selected. It may be that
this density is not unimodal, in which case the MSE esti-
mate can be arbitrarily unlikely. Another choice, the ML es-
timate, resultsin sequenceswhich arenot typical [2]. Infac-
t, in such cases the role of prediction is not clear, although
sampling is. As a consequence of our complete model of
uncertainty, synthesis—thetask of generating multiple plau-
sible patterns each of which displays the observed dynam-
ics—isviable. Having modelled uncertainty means we aso
avoid mere repetition of observed data; this distinction is
important in a number of applications such as image or au-
dio tasks where humans are adept at discerning repetitive
structure. To generate synthesis paths, we need only sam-
ple from the induced conditional distribution of the model.
If we have accurately captured the relation and randomness
inherent in the process this will preserve its observed struc-
ture.

5. DISCRIMINATIVE MODELSFOR PROCESS
CLASSIFICATION

As described in [1], such a model aso can be used to eval-
uate the likelihood of a new process sequence of unknown
type under the learned dynamical model. When all hypothe-
ses have been modelled, a simple evaluation and likelihood
ratio test will allow usto discriminate. However, in the case
that we wish to discriminate between a modelled process
and a continuum of other possibilities which we are not
able to model accurately, the question becomes more dif-
ficult. The problem of signature verification considered lat-
er is one such case where it may not be possible to model
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Fig. 2. (a) Example signature; (b) synthesis with 4d statistic using only local (dz, dy) information; (c) 4d statistic of local
(z,y) information; (d) 3d statistic of loca (dz, dy) augmented by time information

“dternatives’, i.e. forgeries.

However, it is still possible to test discriminatively. It
can be shown that in the large-data limit the log-likelihood
of the process X' will approach its negative entropy rate
—H(X"). We can bound the deviation from this for a giv-
en acceptance probability and number of samples, or there-
quired sample size for a given deviation and probability of
acceptance. Any other process ) will approach —H(Y) —
D(Y||X) where D(-) isthe KL-divergence between the two
processes. This quantity may be larger than —H(X'), when
Y representsa“ more probabl e than expected” version of X';
but Y which do not exhibit the same dynamics will gener-
ally be unlikely under A”’s model and so have a likelihood
lessthan —H(X').

While we cannot characterize the probability of false-
alarm without some model for “al other processes’; we can
characterize the probability of rejecting a correct process X’
as a function of the number of samples and the acceptance
region, or choose aregion of acceptance given afixed num-
ber of samples and an acceptable probability of incorrect
rejection.

6. HANDWRITING ASA DYNAMICAL SYSTEM

Handwriting represents a highly nonlinear system which ex-
hibits both obvious structure and variability. Signatures are
the most extreme example, being so consistent that we reg-
ularly use them as verification of identity yet random e-
nough that no two look exactly alike. Even text of arbi-
trary content contains a considerable amount of information
about its writer’s identity. Regarding handwriting as a two-
dimensional time series, we can then consider the problems
of signature synthesis and recognition as problems of mod-
elling this dynamical system.

To acquire our signature examples, we used a CrossPad
digitizing tablet, which samples with equa time-spacing
and a spatial resolution of 256 pixels/inch. Eight exam-
ple signatures were taken from each of five subjects and re-

sampled to have the same number of samples (that person’s
average, between 130 and 200 points); no further warping
or feature-matching was performed. Informative statistic-
s were then learned within the recent past, i.e. the previ-
ousten (x, y) pairs using the methodology of [1]. Forgeries
were used solely in thelikelihood testing stage, not for train-
ing, and consisted of so-called “skilled” forgeries, wherein
the forger is given access to copies of the true signature,
time to practice, and knows that the dynamics of the motion
will play arole. For testing, the new signature is resampled
to the same length as those of the training set, and the ac-
cumulated log-likelihood of the new data conditioned on its
statistics of the past is computed.

Inherent in any model is a choice of coordinate system-
s, and frequently its selection is quite relevant to the dif-
ficulty of the task. In this case there are two obvious co-
ordinate systems:. relative and differential. This illustrates
an essential tradeoff in such problems, namely manualy re-
moving information which may or may not be extraneousin
order to improve the volume of data available for the densi-
ty estimate. If the removed information is truly extraneous
thisimprovesthe estimate; if not it may create bimodalities
which could otherwise be differentiated. For the momen-
t we put this issue aside to present some results; we will
returnto it later.

In Figure 2 we see examples of atrue signature and sev-
era synthesized sample paths. The first, given only differ-
ential information, may possess characteristics of handwrit-
ing but failsto capture the process. Essentially, thisisdueto
alack of context — it has insufficient information to disam-
biguate position within the word. The second, using relative
(z,y) coordinates, possesses context but as we might ex-
pect has more consistency near (0, 0) than at later positions
which are dependent on long-term factors such as slant or
size deviation. Finally, differential coordinates augmented
by atime index have good consistency throughout but are
not, for example, confined to a straight line.

This illustrates an earlier point. The dynamics of sign-
ing are not stationary; it is only through conditioning on s-
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Fig. 3. Estimated PDF of average log-likelihoods for test signatures (solid), training (dotted), and forgeries (dashed) for

“ihler” and “john”

tatistics which provide this context that we can approximate
them as such. If the necessary context is present in the ob-
servations, it will belearned; but without it the model cannot
hope to capture the true dynamics. Such context is clearly
necessary for synthesis, but may be less vital for discrimi-
nation. Figure 3 shows a kernel estimate of the distribution
of average likelihoods for three cases. signatures from the
training set (excluding them from the density first), true sig-
natures from the testing set, and forgery attempts. Notice
that despiteits small size the training set provides a reason-
able estimate of the true likelihood distribution, while forg-
eries are in general found to be unlikely under the learned
models.

It should be noted that this preliminary result was re-
stricted to short, single stroke signatures. It is certainly pos-
sibleto learn multiple stroke models. More complete details
can befoundin[6].

7. CONCLUSIONS

We have shown the flexibility and capacity of our approach
to model difficult dynamical systems involving nonlinear
and nongaussian dynamics, even a degree of nonstationar-
ity. The system model possesses the ability to synthesize
realistic sample paths, and to characterize the likelihood of
anew sequence. We discussed the use of these models for
synthesis and hypothesis testing, even when no alternatives
can be well characterized.

We then take a novel outlook to the handwriting recog-
nition problem. Signature verification is a task in which we
wish to differentiate between two hypotheses, but in reality
datafrom only oneis available to us. This perhaps makes a
dynamical system model and likelihood evaluation unique-
ly suited for such atest, since we have the assurance that the

better our model fits the true dynamics the more difficult a
forgery will be. We demonstrate the capability to learn such
adynamical model, even from few examples, and show that
it has captured dynamicsin two ways—its capability of gen-
erating plausible new signatures, and in the clustering of test
signatures around the estimated entropy rate. We a so show
that it isat least reasonably difficult to forge such adynamic,
even with practice.
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