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ABSTRACT

This paper proposes a generalized multipath separability

condition for subspace processing and derives a novel COD
(Combined Oversampling and Displacement) algorithm to
utilize both spatial and temporal diversities for path sepa-
ration and DOA estimation. A unique advantage lies in its
ability to cope with the situation where the number of mul-
tipaths is much larger than that of antenna elements, which
arises in many practical situations. The traditional data
matrix or any of its horizontally expanded versions cannot
yield a su�cient matrix rank to satisfy the condition, when
there is antenna de�ciency. Neither can a vertical expan-
sion via oversampling, except when there is no overlapping
among intra-user paths (a much stronger condition than the
asynchrony condition). The COD strategy solves the an-
tenna de�ciency problem by combining vertical expansion
with temporal oversampling and horizontal expansion with
spatial displacement. Another unique advantage of COD
is its multiplicity of eigenvalues which greatly facilitates the
later signal recovery processing[5]. The paper �rst analyzes
the theoretical footings for COD and follows with some
illustrative simulation results in noisy channels.

1. INTRODUCTION

This paper considers the MIMO path separation problem at
the receiving antenna array in up-link multipath propaga-
tion scenario. Our objective is to blindly separate di�erent
(both inter- and intra-user) paths by identifying their DOAs
which will be subsequently used for source signal recovery.
The technique is based on subspace approach which has
become a dominant trend for DOA (Direction of Arrival)
estimation, e.g. MUSIC [1], TAM[2] and ESPRIT[3].

For convenience, we normalize the symbol interval of
the digital sources into unit one. Consider d digital users
si(t) (1 � i � d) each transmitted through ri independent
multipaths with �ij , �ij , gij(t), �ij denoting the DOA, com-
plex fading factor, overall temporal response and time delay
for path (i; j) (1 � i � d; 1 � j � ri) respectively. Assume a
ULA (uniformly-spaced linear antenna array) ofM antenna
elements at the receiver and denote xm(t) (m = 1; : : : ;M)
as the baseband signal observed at m-th antenna element,
then relating them with the parametric multipath model
yields

~x(t) =
�
x1(t) x2(t) : : : xM(t)

�T
(1)

=

dX
i=1

riX
j=1

~aij�ijgij(t� �ij) � si(t) (2)
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where ~aij =
�
1 ej2�!ij : : : ej2�(M�1)!ij

�T
is well

known as the antenna response vector (!ij = �
�o
sin(�ij)

with � denoting the spacing of two adjacent antenna ele-
ments and �o the carrier wavelength). See [4, 5] for more
details.

Most existing subspace processing techniques are based
on a data matrix X formed from xm(t)(m = 1; : : : ;M). For
example, the (M�N) basic data matrixX adopted in many
traditional approaches is

X =
�
~x(0) ~x(1) : : : ~x(N � 1)

�
(3)

For analysis of such data matrices, it is useful to de�ne a
Vandermonde antenna response matrix A

A =
�
~a11 : : : ~a1r1 : : : ~ad1 : : : ~adrd

�
(4)

2. SEPARABILITY CONDITION

Definition 1 (Full Multipath Separability)
A data matrix X is said to have what we called a \full

multipath separability property", if there exists a space-time

factorization X = Fs � Ft satisfying

1. \Fs-condition":

Fs has full column rank and each of its column vec-

tor reveals the spatial information concerning DOA

of exactly one path. Moreover, each path can �nd at

least one corresponding column vector in Fs;

2. \Ft-condition":

Ft has full row rank and each of its row vector bears

the temporal signal information from exactly the same

path as that in the corresponding column of Fs.

3. COD DIVERSITY COMPENSATION

Traditional approaches assume a large number of antenna
elements (M � r) and the basic data matrix X in Eq[3]
has a space-time factorization with Fs = A satisfying the
Fs-condition in De�nition 1. Under the much more chal-
lenging situation when M is small (possibly M < r), the
(M � r) matrix A will no longer necessarily have full col-
umn rank. Therefore, it is necessary to (1) compensate the
inadequacy in spatial diversity along vertical dimension of
A; (2) come up with a substituting space-time factoriza-
tion which holds both Fs and Ft-condition in De�nition
1 and meanwhile (3) retain a proper structure of Fs for
DOA information extraction. To this end, we propose the
novel COD strategy which bene�ts from combined verti-
cal expansion with temporal oversampling and horizontal
expansion with spatial displacement.



3.1. Diversity Compensation Strategies

3.1.1. Temporal Oversampling

When a signal is sampled fractionally at the antenna, the
oversampling factor P denotes the number of samples in
one symbol interval. At p-th oversampling point, the data
vector ~x(t+ p�1

P
) can still be obtained from Eq[2] by substi-

tuting �ij with (�ij�
p�1

P
) and other parameters unchanged.

Definition 2 (Shifted Path Delays)
We de�ne shifted time delay of path (i; j) at p-th oversam-

pling point as �
(pjP )

ij = (�ij �
p�1

P
), which can be expressed

as the sum of shifted integer path delay T
(pjP )

ij and fractional

path delay 

(pjP )

ij .

Definition 3 (Convolutional Vectors/ISI Length)
We de�ne the (individual-path) convolutional signal vector

of time n as the sequence of source signals convolved at all

the P oversampling points in path (i; j) within a symbol

interval [n,n+1). More exactly,

~sij(n) =

2
6664

si(�T
(P jP )

ij � 1 + n)

si(�T
(P jP )

ij � 2 + n)

.

.

.

si(�T
(P jP )

ij � Lij + n)

3
7775 (5)

where the ISI length Lij is the number of (baud-rate) source

signal samples convolved (it is determined primarily by the

lengths of the transceiver FIR �lters, the dispersive channel

and in a minor way by 

(pjP )

ij (1 � p � P )). The shifted

convolutional temporal vector associated with oversampling

point p is therefore

~g
(pjP )

ij =

2
64

gij(T
(P jP )

ij � T
(pjP )

ij + 1� 

(pjP )

ij )

.

.

.

gij(T
(P jP )

ij � T
(pjP )

ij + Lij � 

(pjP )

ij )

3
75

T

Based on these, Eq[2] is equivalent to the vector form

~x(n+
p� 1

P
) =

dX
i=1

riX
j=1

~aij�ij~g
(pjP )

ij ~sij(n) (6)

3.1.2. Spatial Displacement

For diversity compensation we can form more than one vir-
tual (spatial) sections from adjacent elements of a single
antenna array. Here the spatial displacement K is de�ned
as the total number of such sections (i.e. #[1; 2; : : : ; (M �

K+1)] form the �rst section, #[2; 3; : : : ; (M�K+2)] form
the second and so forth). The partial antenna observation

vector associated with section k (1 � k � K) is denoted as

~x
k
(t) =

�
xk(t) xk+1(t) : : : xM�K+k(t)

�T

and the corresponding partial antenna responsematrixA(kjK)

is the portion of k-th to (M �K + k)-th rows of A.
De�ning a (r � r) diagonal matrix � = diagfej2�!ijg,

then from the Vandermonde structure of A it is easy to
verify the shift-invariance property of A(kjK):

A
(kjK)

= A
(1jK)

�
k�1

(8k = 1; : : : ; K) (7)

3.1.3. Data Collection

We stack the antenna observations of section k at p-th over-
sampling point into a ((M �K + 1)�N) data matrix:

X
pjP

kjK
=
�
~xk( p�1

P
) ~xk(1 + p�1

P
) : : : ~xk(N � 1 + p�1

P
)
�

Lemma 1 (Matrix Factorization)
Based on the parametric multipath channel model in Eq[2],

X
pjP

kjK
is equivalent to a product form

X
pjP

kjK
= A

(kjK)
�G

(pjP )
� S (8)

where G(pjP )
and S are (r �

P
i;j

Lij) and (
P

i;j
Lij �N)

matrices determined by (p, gij(t)) and si(t) (i = 1; : : : ; d; j =
1; : : : ; ri) respectively together with other path parameters

(e.g. �ij , �ij).

Proof: Eq[8] can be proved if we transfer Eq[6] into a ma-
trix form by setting the shifted temporal response matrix

G
(pjP )

= block � diagf�ij~g
(pjP )

ij g (9)

and the (expanded) source signal matrix

S =
�
ST1 ST2 : : : STd

�T
(10)

where Si =

2
664

~si1(0) ~si1(1) : : : ~si1(N � 1)
~si2(0) ~si2(1) : : : ~si2(N � 1)

...
...

. . .
...

~siri(0) ~siri(1) : : : ~siri(N � 1)

3
775.

3.2. COD Expansion and Space-Time Factorization

Combining temporal oversampling vertically and spatial dis-
placement horizontally leads to the COD data matrix:

X =

2
6664

X
1jP

1jK
X
1jP

2jK
: : : X

1jP

KjK

X
2jP

1jK
X
2jP

2jK
: : : X

2jP

KjK

...
...

. . .
...

X
P jP

1jK
X
P jP

2jK
: : : X

P jP

KjK

3
7775 (11)

Theorem 1 (COD Space-Time Factorization)
For COD data matrix X in Eq[11], we have the space-time

factorization with

Fs =

2
664

A(1jK)G(1jP )

A(1jK)G(2jP )

.

.

.

A(1jK)G(P jP )

3
775 (12)

Ft =
�
S �S : : : �K�1S

�
(13)

where � is a diagonal matrix with dimension
Pd

i=1

Pri
j=1

Lij .

Proof: Substitute each submatrix in X of Eq[11] with its

matrix product form X
pjP

kjK
= A(kjK) �G(pjP ) � S in [8]. Ex-

ploiting the shift-invariance of A(kjK) in Eq[7] and block
diagonal structure of G, we have

X
pjP

kjK
= A

(1jK)
��

k�1
�G

(pjP )
� S (14)

= A
(1jK)

�G
(pjP )

��
k�1

� S (15)

where � is the diagonal expansion of � by repeating each
of its element (ej2�!ij ) Lij times consecutively. Then it is
trivial to obtain the space-time factorization in the lemma.



Theorem 2 (COD Separability Condition)
Assuming independent users and P su�ciently large to

yield a full column rank of Fs, COD matrix X meets the

\full multipath separability condition" if and only if

K � max
d
i=1f

Pri
j=1

Lij

Li
g (16)

where Li is de�ned as the rank of Si.

Proof: By inspection, each column(resp. row) of Fs(resp:Ft)
bears the information of DOA (resp. signal and ISI) cor-
responding to exactly one path. Since P is assumed to be
su�ciently large to yield the full column rank RankfFsg =P

i;j
Li;j (cf. Remark2), therefore, what remains to be ver-

i�ed is the full row rankness of Ft. Assuming all users have
di�erent (and linear independent) signal sequences, it suf-
�ces that we verify the full-rankness of the rows attributed
to each individual user. Each block column of Ft has rank
Li � RankfSig (attributed to the i-th user). Each incre-
ment of K brings in one additional column-block resulting
in a net increase of rank by exactly Li. (A disclaimer: we
exclude pathological situations such as two DOA's happen
to coincide, etc). The theorem is thus proved.

Remark 1 (Practical Range of K)
Note that Li �

Pri
j=1

Lij due to overlapping of convolution

durations among intra-user paths. In most practical situa-

tions, it is reasonable to assume that all the paths have inde-

pendent delays and channels so that the overlapping will not

be very severe. Thus a displacement of K = 2 (or at most

K = 3) su�ces to meet Eq[16] in most cases. So we con-

clude that DOA estimation and path separation problem is

theoretically tractable by COD as long as M � 4(= K+1),
i.e. it requires a very small antenna size.

In some cases when the di�erent intra-user paths ar-

rive temporally far enough from each other such that Li =Pri
j=1

Lij , then separability is already achieved by setting

K = 1, i.e. no spatial displacement needed in Eq[11].

Remark 2 (Practical Range of P )

As a practical guideline, we suggest P >> maxdi=1f

P
ri

j=1
Lij

M
g

to guarantee the (numerical) full column rank of Fs.

4. COD DOA FINDING ALGORITHM

With reference to Theorem 1, in COD expansion, each
vertical block A(1jK)G(pjP ) of Fs retains the Vandermonde
structure. ThusX possesses an \intra-block shift-invariance
property", which is critical for DOA estimation. Let Qu

and Ql be matrix- truncation operations on Fs which re-
spectively extract the (M �K) upper and (M �K) lower
rows out of each of the P vertical subblocks. We have

Theorem 3 (COD Eigenvalue Theorem)
Given a COD data matrix X which satis�es the \full mul-

tipath separability property", apply SVD (Singular Value

Decomposition) to obtain X = U�V. We assert that there

exists an invertible matrix R such that

(Qu[U])
+
�Ql[U] = R

�1
�R (17)

and hence DOAs of all the paths can be derived from the

diagonal elements in � ((�)+ denotes pseudo-inverse).

Proof: After the extractions, we have

QuFs =

2
664

A(1jK+1)G(1jP )

A(1jK+1)G(2jP )

...

A(1jK+1)G(P jP )

3
775 QlFs =

2
664

A(2jK+1) �G(1jP )

A(2jK+1) �G(2jP )

...

A(2jK+1) �G(P jP )

3
775

Applying Eq[7], it is immediate to show

Ql[Fs] = (Qu[Fs])� (18)

Obviously, U = FsR for some nonsingular matrix R since
the full column rankness of Fs implies that U and Fs share
the same column span. It follows that

(Qu[U])
+
�Ql[U] = R

�1
(Qu[Fs])

+
� (Ql[Fs])R

= R
�1
�R (19)

Eq[19] represents an eigenvalue decomposition where � is
the nonsingular, diagonal eigenvalue matrix (cf. the de�-
nition of � in Section 3.2). The DOAs then can be calcu-
lated from its diagonal elements ej2�!ij (i = 1; : : : ; d; j =
1; : : : ; ri) and each eigenvalue will have a multiplicity of Lij .

The following COD algorithm can be regarded as a
(block-)generalized version of TAM and ESPRIT[2, 3].

Algorithm 1 (COD DOA-Finding Algorithm)

1. Select suitable parameters K and P according to The-

orem 2, Remark 1,2, to form COD data matrix X;

2. Apply SVD on X to obtain X = U�V;

3. Block-wise Extraction of U for Qu[U] and Ql[U];

4. Find the eigenvalues of (Qu[U])+ �Ql[U];

5. Calculate DOAs �ij from the eigenvalues ej2�!ij .

5. SIMULATION

The COD framework covers an extended family including
basicTAM/ESPRIT[2, 3],HT-TAM (horizontal-temporally-
oversampled TAM),HS-TAM (horizontal-spatially-displaced
TAM), and combinedCOD. Our simulation study provides
a comparison of their relative performances versus the max-
imum thermal SNR (among all the paths).

5.1. Performance Comparison When M > r

We have conducted 500 experiments with M = 10, r = 7,
d=3, and the thermal SNR ranging from 0 to 20 db. In
terms of �nding all the paths, COD has a success rate
around 80%-99% statistically, which is clearly superior to
all the others (cf. Figure 1(a)). In terms of all paths DOA
estimation accuracy, COD and HT-TAM deliver superior
performance (around 1.0 to 0.3 degree in error) than the
other two (cf. Figure 1(b)). From a practical perspective,
the dominant paths would often su�ce for the purpose of
the signal recovery. As a selection criterion, we take advan-
tage of the knowledge that the dominant path's eigenvalue
are more likely to comply with unit-circle condition[5]. Sim-
ilar as in all paths case, for dominant paths, COD has an
extraction rate around 94% to 99% and estimation error
around 0.75 to 0.2 degree, whose performance is well above
those of others (cf. Figure 1(c)(d)). Figure 2 depicts the
DOAs estimated by TAM and COD, when M > r. Note
that COD successfully �nd all the paths (see the outermost
ring) while TAM misses quite a few (the second ring).



5.2. COD Performance When M � r

When M < r, the traditional TAM/ESPRIT doesn't
work. For investigation of COD performance, we have con-
ducted 200 experiments for M = 6, r = 10, d = 3 with SNR
ranging from 0 to 20 db. As shown in Figure 3, COD has
an all-path-extraction rate of 60% to 90% with 1.6 to 0.45
degree error in DOA estimation. For dominant paths, the
success rate is around 85% to 95% and it delivers an esti-
mation accuracy of 1.1 to 0.35 degree in DOA error. Figure
4 depicts the DOAs estimated by COD when M � r.
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Fig. 1. Performance comparison for the case M > r: (a)
all-paths extraction percentage; (b) all-paths DOA estima-
tion error; (c) dominant-paths extraction percentage; (d)
dominant-paths DOA estimation error vs. SNR.
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Fig. 3. COD performance when M � r: (a) all-paths
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(c) dominant-paths extraction percentage; (d) dominant-
paths DOA estimation error vs. SNR.
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