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ABSTRACT

This paper proposes a classification scheme that incor-
porates statistical models and support vector machines.
A hybrid system which appropriately combines the ad-
vantages of both the generative and discriminant model
paradigms is described and experimentally evaluated on a
text-independent speaker recognition task in matched and
mismatched training and test conditions. Our results prove
that the combination is beneficial in terms of performance
and practical in terms of computation. We report relative
improvements of up to 25% reduction in identification error
rate compared to the baseline statistical model.

1. INTRODUCTION

Text-independent speaker identification, as a classical,
purely acoustic recognition task, has been subject of in-
tensive research efforts for the past several decades. Major
challenges - namely the high variability of channel prop-
erties and the question of appropriate model structures to
capture the characteristics of an individual voice - have been
addressed by a wide range of feature extraction and model-
ing techniques. These cover pattern matching approaches,
such as dynamic time warping, statistical modeling, e.g.
hidden Markov models and Gaussian mixture models, and
connectionist methods, e.g. multi-layer perceptrons.

Gaussian mixture models (GMM) represent the state-of-
the-art technique in text-independent speaker recognition
[3] and many other tasks including detection and segmen-
tation [12, 15].

Particularly in the telephony environment, given rela-
tively small amounts of training data (e.g. 30 sec), well-
designed GMM systems show a good robustness to channel
variations and seem to best achieve independency of text,
topic and language.

In recent years a new classification methodology based
on Support Vector Machines (SVM) [1, 14] has found an in-
creased interest in the speech community. Favourable prop-
erties of the SVM such as their inherent class-discriminative
model structure and the use of nonlinear-kernel meth-
ods represent an attractive way of enhancing the stan-
dard methods, mostly based on generative models (GMM,
HMM), by complementary information and classification
“power.”

This paper describes a classification scheme that incor-
porates both the SVM and the statistical models in a way
that the robustness advantage of the generative statistical
models favourably combines with the discriminative power
of the SVM. We apply this scheme to the task of text-
independent speaker recognition and show that the above
mentioned combination is both beneficial in terms of per-
formance and practicable in terms of computation.

The paper is organized as follows: Section 2. describes the

statistical (baseline) model, followed by Sec. 3. dedicated
to the construction of a hybrid GMM/SVM classification
system. The experimental task, data, and results are pre-
sented in Sec. 4. with subsequent discussion in Sec. 5.

2. THE BASELINE SYSTEM

In the first stage of our system, statistical models, namely
Gaussian mixture models (GMM), serve as a parametric
basis for the support vector machines and also as a baseline
system for performance evaluation.

Due to the favourable properties mentioned above,
GMDMs are a good choice for our purpose: (1) they provide
a suitable parametric structure for the SVM kernel (see Sec.
3.), and (2) they supply likelihood scores for reducing the
size of the hypothesis set in the first stage to a small num-
ber of candidate classes, without great compromise in the
accuracy.

For the class (speaker) modeling a hierarchical speaker
modeling system [2] has been applied. Due to the ex-
ploratory nature of the experiments in this paper, we sim-
plified this system by considering only the level without
phonetic knowledge (i.e. global level). Thus, each speaker
model § with K mixture components is determined by the
set 8; = {c¥,uf, =¥, P}, with p¥, B¥, and P being
the mean vectors, the covariance matrices and the priors
for the K components respectively. Based on a sequence
of training vectors belonging to a particular speaker, the
Gaussian parameters are trained via Bayesian adaptation
from a speaker independent GMM.

The likelihood of an observation x: based on a speaker
model 6 is then calculated as follows:

B K P(k|x:)
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3. THE CLASSIFICATION SYSTEM

The proposed classification system is formed by an en-
semble of SVM binary classifiers which emerge from the
GMMs of the baseline system using the Fisher kernel
method. To better understand the system, we first review
the main features of its principal ingredients and then de-
scribe the details of the classification process.

3.1. Support Vector Machines

In a nutshell, Support Vector Machine (SVM) is a classifica-
tion learning methodology that incorporates two key ideas:

e Out of all possible separating hyperplanes (linear clas-
sifiers) - the Optimal Hyperplane [14] is the one with
the maximal margin, with respect to a labeled training
set, i.e.

’ f* = argmaxminy: f (:) )
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where f(x) = (z-w) + b for z,w € RY and b € R,
yi € {—1,1} are the labels corresponding to the train-
ing set {z;}, and sign (f (z)) is the classification rule.
Intuitively, the choice of a classifier positioned in the
“middle” between the two classes seems reasonable,
and one can also expect to achieve robustness with re-
spect to both the sample space as well as the hypoth-
esis (function) space: a slight perturbation in either
one of them should not affect the resulting classifica-
tion. Without imposing any constraints, the optimiza-
tion problem (2) is ill-posed. To get around it, a reg-
ularization term, the norm of w is introduced. This
term serves as a complexity/capacity control mecha-
nism (much like in the MDL methodology) that re-
alizes Vapink’s Structual Risk Minimization principle
[13, 14].

e If an algorithm can be described merely by dot-product
operations - then one can in principle avoid the need to
explicitly represent the acting vectors. This calls for a
separation between the input space, in which the input
vectors reside, and the feature space, in which the vec-
tors act. There may be such a separation if one applies
some sort of transformation (linear or nonlinear) plac-
ing the input vectors in another space, hopefully more
suitable for classification. By the assumption that the
learning algorithm acts purely upon dot-product values
it follows that, given an efficient method of computing
those values - the algorithm’s computational complex-
ity will depend on the dimension of the input space
and the training set size, rather then the dimension of
the feature space. Hence, the “curse of dimensionality”
may be alleviated.

Example 1 The polynomial kernel, (z - y)? corre-
sponds to a map into the space spanned by all products
of exactly d dimensions RY . Adding a shift parameter
c>0,ie (x-y+c)?, accounts for all products up to
d. Using these kernel operations amounts to perform-
ing dot-product operations in an O(Nd) space, while
the cost of the actual computation scales with N.

Another important ingredient of the SVM methodology
is the Soft Margin which is introduced in order to enable
learning even if the sample set is in fact linearly insepara-
ble: the existence of outliers, namely mislabeled samples, is
tolerated by incorporating positive slack variables &; in the
SVM optimization problem and assigning an extra cost for
the errors, which scales with Zz &". With the choice m =1
the SVM (primal) optimization problem can be stated as
follows:

mingpe  lw|° +CY, &
s.t. yi (w-zi) +b) > 1 & (3)
& >0

(3) has a global, tractable solution, and is described solely
using the Lagrange multipliers and dot-product values in
the feature space, i.e. by kernel operations.

8.1.1. The Fisher kernel

Finding an appropriate kernel function for a particular
application can be difficult and remains largely an unre-
solved issue. One of the recent innovations in the field of
kernel engineering has been made by Jaakkula and Haussler
[7] who formed a link between generative and discrimina-
tive models: Generally speaking, generative models (such
as GMM, HMM or graphical models) will focus on pro-
viding an efficient description of the data while discrimi-
native models will strive for a better description of a deci-
sion boundary between the various classes. The fact that

usually discriminative methods outperform generative mod-
els at classification tasks should also be attributed to the
fact that the training set (for discriminative methods) is la-
beled, which obviously provides significant amount of extra
information. Jaakkula and Haussler suggested to encode
the descriptive power of generative models in the design
of a mapping function that will map the input data to a
(fixed dimension) feature space in which Denote p(z|f) a
generative model, where § are its parameters, the mapping
function is an analogous quantity to the model’s sufficient
statistics, known as the Fisher score:

U (z) = Vo log (p(z|0)) (4)

Each component of U, is a derivative of the log-likelihood
score for the input vector x with respect to a particular pa-
rameter. In the GMM case, the feature vector components
are derivatives with respect to the priors, the mean vectors
and the covariance matrices (sec. 2.). The magnitude of
the components specify the extent to which each parame-
ter contributes to generating the input vector. The natural
kernel for this mapping is the inner product between these
feature vectors, scaled by a positive definite matrix, M

Eret (:c,wl) =Us (z) MUy (wl) (5)

and the Fisher kernel is obtained by choosing M = I =
E, (Ua (z) Ug (:II)T) i.e. Fisher information matrix. An-
other reasonable choice is to set M = 1, if I is too difficult
to compute. In our experiment we have used a normaliza-
tion procedure to scale each component of the feature vector
to the [—1, 1] interval.

The Fisher kernel defined above provides a “natural”
means for comparing examples induced by the generative
model. It was also shown [7] that subject to some mild
assumptions, a kernel classifier employing the Fisher ker-
nel would be at least as powerful as the original generative
model, and in most cases will actually improve the discrimi-
native power of the generative model. Recently, Oliver et al.
[8] suggested another justification for the utility of Fisher
kernels by providing a regularization-theoretic analysis of
this approach which extend the set of kernels to a class of
natural kernels. Our applied scaling procedure may thus be
considered as a construction of a kernel in that extended
class.

8.1.2. Handling massive data sets

In large scale problems (which are so common in real
world applications such as speech, document classification,
OCR, etc.) the optimization problem becomes impractica-
ble. Several approaches to handle this problem have been
suggested in the past few years which basically trade storage
requirements for an increase in the overall computational
complexity. In the current study we took an additional step
and traded training convergence with an increased number
of classifiers we are actually using. Constructing an En-
semble of Classifiers is applied in many popular learning
techniques, such as Boosting, Bagging and Error-Correcting
Output Coding (ECOC) (see sec. 3.2.). The strength of an
ensemble stems from the observation that non-correlated
errors made by individual classifiers can be removed simply
by (un/weighted) voting’. We use an all-pair ECOC tech-
nique to shift from binary to multiclass problems allowing
for a very crude convergence at individual SVM problems,

1For an ensemble of L classifiers, if the error rate of every
individual classifier is less than or equal to P < 0.5, then the
probability that the outcome of a majority vote will not be cor-
rect is upper bounded by P



knowing that the voting scheme implicit in the ECOC will
compensate for that. By using the SMO algorithm [9] to
solve the optimization problem, and by imposing very loose
convergence criteria we obtain a solution of about 75— 80%
of the optimum (measured by the value of the objective
function). This, however, brings a dramatic decrease in
computational complexity - from an order of several hours
to a few minutes in convergence time.

3.1.3. Fitting Sigmoid

To enable post processing, it is necessary to calibrate the
output of the SVM classifier with values (scores) from other
parts of the system. While there may be numerous ways
to do so, it seems reasonable to assign probabilistic rea-
soning to the calibrated classification scores. In [10] Platt
suggests to train an additional sigmoid function to map
the SVM outputs to posterior probabilities. The resulted
SVM+Sigmoid classifier can be regarded as a “soft” lin-
ear classifier acting in the feature space and smoothing the
original “hard” SVM decisions according to the following
probability law:

Py=1f") = L

T+ oxp (AF + B) (6)

where f* is the maximal margin classifier and A, B are the
sigmoid parameters (found by maximizing the likelihood
of f* scores on the training data). Apart from providing
a useful means for post-processing, the engagement of the
sigmoid also seems to add certain amount of robustness to
noise (as evidenced in our experiments).

3.2. Handling Multiclass Classification via Error
Correcting Output Codes

While the resulting SVM classifiers (with or without the ad-
ditional sigmoid fitting) are binary classifiers, the speaker
recognition task is essentially multi-class. Diettrich and
Baikiri [4] presented a general framework, based on error-
correcting codes, to obtain a multi-class decision using
binary classifiers: The original set of classes are parti-
tioned into complementary (two) subsets. Each such par-
tition defines a binary problem which is used to train a
binary classifier. By repeating this process L times (each
time using a different partition), we obtain an ensemble
of L classifiers. The partitions are defined by (usually
pre-determined) error-correcting code matrix. This matrix
combinies the (binary) classifications to yield a multi-class
decision: Each class is encoded as an L-bit codeword, such
that the I-th bit is predicted by the I-th classifier. When
the L classifiers are applied to a testing point, their pre-
dictions from an L-bit output word and based on the code
matrix, we choose the class whose codeword is the closest
(in Hamming distance) to the L-bit output word.

Methods for selecting the code matrix ranges from the
simplest “one-against-all” approach (in which each bit cor-
responds to a prediction whether the given point belongs
to a particular class) to picking codes which are specifically
designed to have strong error-correcting properties. In our
experiments we followed the All-Pairs technique of Hastie
and Tibshirani [6] who suggested to compare all pairs of
classes (i.e. ignore the data from other classes at training)
and then combine the pairwise decisions to form the multi-
class decision. In this case, the code matrix alphabet is
extended to include an NC symbol which states that this
bit should be ignored when calculating the distance between
the output and the code word.

3.3. Putting It All Together: Building a Hybrid
Classification System

The basic building block of the classification system is a bi-
nary classifier constructed by a Fisher kernel SVM classifier

with a fitted sigmoid: Based on the GMMs of the baseline
system, it is possible to associate a unique Fisher mapping
(4) to each speaker® and then construct a kernel matrix (5)
that will be plugged into the SVM optimization problem.
For each resulting linear classifier we trained a sigmoid to
map its score values to posterior probabilities. The final
binary classification score is given by Eq. (6). Such binary
classifiers are trained for all possible pairs of speakers and
their scores combined using All-Pairs ECOC scheme. The
final classification rule is the maximum decision over the
speakers scores.

Clearly this classification process is very much involved
and thus should be used to resolve cases which are too
“hard” for the baseline system. We therefore constructed
the hybrid system as followes:

1. The baseline system produces an N-best list, based on
the GMMSs scores.

2. The classification system considers only the N-best
speakers and selects the one with the maximal score.

This two step procedure not only significantly reduces
the work load, but also increases the accuracy of the overall
system, since the baseline system serves as a filter passing
only the relevant information for classification. However,
if the baseline system fails to do so, a classification error
occurs.

4. EXPERIMENTS

4.1. Database

The publicly available Lincoln Lab Handset Database LL-
HDB [11] was used to train and test both system parts in
text-independent mode. The database contains telephone-
bandwidth speech from 52 (male and female) speakers
recorded over various types of microphones and thus al-
lows for targeted evaluations in matched and mismatched
acoustic conditions. In particular, we used data from four
types of carbon-button microphones denoted CB1 through
CB4. Each speaker recorded two long (30 sec) and ten short
sentences (scripts from the TIMIT database) through each
of the transducers. In all our experimental configurations,
one long sentence of each speaker, namely the “rainbow”
text, served for system training and the short utterances
were used for testing, giving a grand total of about 2000
tests across the four microphone conditions.

4.2. The Baseline System

As front-end features for the baseline GMM system, 19-
dimensional MFCC and their first derivatives were used,
forming a 38 dimensional feature vector calculated every 10
ms with subsequent cepstral mean subtraction.

Using the rainbow passages, each GMM consisting of
approximately 30 Gaussians was adapted from a speaker-
independent (SI) model using the MAP criterion [5]. The SI
model was created on a population of few hundreds speakers
taken from an internal telephone-quality speech database.

Two separate systems were built: the first using training
data from microphone CB1, the second on the CB3. The
latter was chosen for comparison, based on the fact that
the first system (CB1) performed worst on tests from this
particular type CB3. Tests were carried out using all four
types CB1 through CB4 on these two systems, thus having
results for one matched and three mismatched condition
rounds, for each of the two systems.

2Note that for a binary problem, this transformation implies
asymmetric role for the positive and negative classes (since it
depends on the generative model of only one of them).



System Test Condition

CB1 | C2 | CB3 | CB4
Baseline GMM CB1 6.9 11.0 | 549 | 354
Hybrid GMM/SVM CB1 5.1 9.8 54.9 | 354
Rel.red.% CB1 25.7 | 10.7 | 0.0 0.0
Baseline GMM CB3 53.0 | 54.0 | 14.2 | 29.9
Hybrid GMM/SVM CB3 | 51.8 | 54.3 | 11.4 | 27.0
Rel.red.% CB3 2.2 -0.7 | 20.3 9.7

Table 1. Identification error rates on the CB1- and
CB3-trained systems for the four types of carbon
button microphones (3-5 sec).

4.3. The Hybrid Classification System

The Fisher mapping transformed the original 38 dimen-
sional input vector to a 2464 dimensional feature space. We
trained 2652 binary classifiers (SVM classifiers and corre-
sponding sigmoids). The time spent to the binary classifier
training never exceeded 2-3 minutes. The same training and
testing sets that were used for the baseline system were also
used to train and test the hybrid system. For classification,
the size of the N-best list was set to 10.

Table 1 shows the identification rates for the two sys-
tems (CB1 and CB3) and tests across all conditions (CB1
through CB4) as described above. Obviously, the micro-
phone mismatch in training and testing is the most influent
factor in performance degradation, however also the partic-
ular type of microphone appears to play a role, which can
be seen in the difference between matched tests for CB1
and CB3.

The utility of the hybrid system is presented by the rel-
ative improvement in identification rate over the baseline
system. In the matched (CB1/CB1 and CB3/CB3) and
low mismatched (CB1/CB2 and CB3/CB4) tests the im-
provement ranges from 25.7% to 9.7% while in the strong
mismatch the performances are in the same ballpark as the
baseline system.

5. CONCLUDING REMARKS

Our main motivation to construct the hybrid classifica-
tion system is to win both worlds by combining the de-
scriptive strength of the baseline system with the high per-
formance classification capabilities of SVM classifiers. An-
other reason to believe that one can gain form this type
of combination is attributed to the fact that the training
of discriminative models is done in a supervised manner,
which obviously injects significant amount of additional in-
formation to the system.

Our experiments confirm these assumptions by showing
that we can outperform the results of the baseline GMM
system without increasing the training set. On the down
side we observed that classifiers are much more affected by
mismatch (since they focus on the decision boundary rather
than the center of mass). Still, the combined performances
never fall short of the baseline system.

We observed a significant amount of decorrelation be-
tween the error regions of the baseline and the hybrid clas-
sification system, even when their performances were com-
parable. By taking advantage of this phenomenon, one may
hope to gain another improvement over the current results.
This is the subject of our further research.
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