MULTIRESOLUTION MRF-BASED TEXTURE SEGMENTATION USING THE
WREATH PRODUCT TRANSFORM PHASE

Gagan Mirchandant and Xuling Luo

Department of Electrical and Computer Engineering
The University of Vermont
Burlington, Vermont 05405
{mirchand, xulinluo }@emba.uvm.edu

ABSTRACT

In this paper, we bring local phase and multiresolution
analysis to the texture segmentation problem. A Markov
random field characterization is still employed, except it
is used to model phase correlations rather than intensity
correlations. Since statistical characteristics of phase are
typically quite different to those of intensity, there exists
the potential for creating greater discrimination in its fea-
ture space. We apply the Wreath Product Transform and
use the phase at higher scales to initiate the segmentation
process. For textures defined by homogeneous regions of
dominant local edges, we see that the new algorithm yields
better segmentation than that obtained through conven-
tional multiresolution algorithms based on lowpass data.

1. INTRODUCTION

The idea of using a Markov random field (MRF) to model
texture, be it for intensity or phase, is an appealing one.
With a MRF, each point is statistically dependent only on
its neighbors. Hence a MRF model is well suited to ac-
count for spatial or phase dependencies and thus can be em-
ployed to impose constraints on the classification of nearby
pixels. Segmentation is then treated as a statistical esti-
mation problem. MRF models have been used to model
segmentation labels [2, 4, 3]. Due to the equivalence of a
MRF and Gibbs distribution [4, 3], the maximum a poste-
riori (MAP) estimate of the unknown labels based on the
observations is obtained by the minimization of an energy
function. Stochastic relaxation such as simulated annealing
(SA) and deterministic relaxation schemes such as iterated
conditional modes (ICM) [3] have been used for the mini-
mization.

Allowing for interaction amongst neighboring pixels, re-
sults in minimization schemes for MAP estimation that
carry a cost: a substantial increase in computation com-
plexity. An alternative to the relaxation schemes is mul-
tiresolution analysis, which provides more efficient compu-
tation. Some authors have used multiresolution label fields.
Others, [9, 12, 6] both multiresolution observation and mul-
tiresolution label fields. In either case, image segmentation
is obtained through a coarse-to-fine process. After an initial
estimate for the segmentation at a coarse scale, the estimate
is refined with a MRF scheme. Results from the coarse scale
are used as starting estimates for the next finer scale. When

using multiresolution observation fields, an image pyramid
is constructed using lowpass filters such as Gaussian [9],
Haar [12], and Binomial [6].

The above framework often works adequately when the
statistical properties of an image are generally distinct for
different texture segments. Properties typically considered
are gray level-based distributions. However, it is not un-
common for regions with the same texture to have com-
pletely different distributions or for different textures to
have similar distributions. We see in [13] examples of both
categories: four regions of the same brittle fracture struc-
ture have completely different distributions, while two dif-
ferent fractile structures (brittle and ductile) have very sim-
ilar distributions. Accordingly, we investigate the role of
phase-based distribution for segmentation. Many situa-
tions exist, such as in SAR interferometry [5], where a
phase characterization allows the determination of topo-
graphic elevation and small ground deformation. Hence, a
multiresolution local phase-based image segmentation algo-
rithm is proposed in this paper. The approach consists of
five steps: (1) Use the Wreath Product Transform (WPT)
[7] to construct the multiresolution observation fields and
use the multiscale phase at scale 1 as the texture features.
(2) Estimate the Gaussian distribution parameters for each
of the predetermined number of classes. (3) Using a MRF
model, minimize a cost function with the ICM algorithm to
obtain an estimate the scale 1 label image. (4) Estimate the
scale 0 Gaussian distribution parameters. (5) Estimate the
scale 0 label field using the scale 1 label field as an initial
estimate. Since we typically expect very different statisti-
cal characteristics than those with intensity based lowpass
images, we may expect a high-quality segmentation for cer-
tain textures. Specifically those with homogeneous regions
of different major local edge directions and thus largely,
non-overlapping distributions.

In the following we recall the phase of the WPT. We
describe the algorithm for MAP estimation and that for
the parameter estimation problem. A method for improv-
ing phase concentration along major edge directions and
thus permitting improved segmentation is described. Fi-
nally, two synthetic examples are constructed where good
segmentation results are obtained with the new algorithm.
These results are compared with the conventional multires-
olution algorithm.



2. FEATURE CHARACTERIZATION WITH
MULTIRESOLUTION PHASES

Much has been written about the role of phase in image
reconstruction and identification. For example, image re-
construction is possible with global Fourier phase [8], local
Fourier phase [1] and local Gabor phase [14]. Local Gabor
phase has been explored in texture discrimination and im-
age segmentation [11]. There are however, disadvantages
when applying this method to real world images. Since
textures encountered may vary considerably in frequency
and orientation, choosing an appropriate set of Gabor fil-
ters is difficult. Long discrete Gabor filters for narrowband
characteristic will cover large spatial area in the original
image. This deteriorates the locality of the spatial features
- a property commonly believed to be important.

In the WPT, with an underlying cyclic group and a
quadtree scan of an image, the phase measures the local
gradient angle and therefore the local edge direction of the
image. This is equivalent to a 4-channel multiresolution
Discrete Fourier Transform (DFT) filterbank. For a 2 x 2
subblock comsisting of four elements g, z1, 2,23 scanned
clockwise, the phase (of the bandpass coefficient) is:
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The phase angle represents the angle of the gradient vector
and hence the local edge direction.

3. SEGMENTATION WITH MRF MODEL

We consider segmentation within a statistical framework.
Specifically, we explore the maximum a posteriori (MAP)
estimation of the solution with Bayesian formulation [10].
There are several random processes involved in this prob-
lem. We define a neighborhood system first. Let S =
81,82, --,8n be a set of sites and let G = G5,8 € S be
a neighborhood system for S, which means s 5 G, and
s € G, implies pixel r € Gs. A second-order neighborhood
system is adopted here, which means that we consider all
the eight directly adjacent neighbors. A subset C C S is a
clique if every pair of distinct sites in C are neighbors, and
C denotes the set of cliques. The first random process is the
class field containing the classification labels. The label field
X is viewed as a locally dependent MRF with respect to G.
This means the prior distribution P(X = ) is chosen to be
a Gibbs distribution, according to the Hammersley-Clifford
theorem. This is expressed as:

Pz) = e, 2)

where the partition function 7 is a normalization constant,
and U(z) is the energy function of the following form:

U(z) = Ve(z). (3)
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Corresponding to the label field, there is the other ran-
dom process - the observation process, denoted by Y. An
image with intensity or phase values is regarded as a re-
alization of such a process. Assume there are m different

classes in the image segmentation problem. Given the class,
we assume the observed values are conditionally indepen-
dent of the others, and have a Gaussian distribution with
class dependent parameters p;,02,i=1,2,---,m. Thisis a
mixture of Gaussian distributions. Although this assump-
tion is not completely valid, it is reasonable and has been
used in [10]. The parameters need to be estimated, which
we address later. For the time being, we assume they are
all known. Given P(z) and P(y|z), the a posteriori P(z|y)
is derived by Bayes theorem:

P(zly) oc P(yle) P(z). (4)

The MAP estimation of z corresponds to minimization of
the cost function:

Ue(z) = Ui(z) + Uz(z,9). (3)

Ui(z) is a regularization term, and imposes spatial homo-
geneity constraints into the model. It is defined as follows:

Ui(z) = Y Vel(s), (6)
cec

where we use for the clique potential:
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where f is assigned some specific value. Usz(z,y) accounts
for the link between labels and observations, and can be
expressed as

Ux(z,y) = Z —In[p(ys
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where k is the class number of z;. The computational as-
pects of this nonconvex minimization problem are nontriv-
ial. As described earlier, the ICM algorithm is used for
minimization.

4. PARAMETER ESTIMATION

We assume the observation Y to consist of m classes. Fach
observed value is conditionally independent of the others
and has a Gaussian distribution with class dependent pa-
rameters i, 02,1 =1,2,---, m. We consider the maximum-
likelihood estimation of these parameters. Let w be the
pixel phase, and let ® denote the parameter vector:
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Then the probability density function of w depending on ®
can be written as:

p(w]@) = aipi(w|d), (10)
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where «; is nonnegative and Ei—l
sian function parameterized by ¢;:

a; = 1, and p; is a Gaus-
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Suppose y;,7 =1,---, N is a set of sample observations
on the mixture. We are interested in maximizing the like-
lihood function, i.e., the probability density function of the
samples, p(y|®),y = (y1,- -, yn). For simplicity we assume
independent samples. Also for convenience, we consider
the log-likelihood function. Following the independence as-
sumption, this can be expressed as

=3 np(y;|0). (12)

Maximum Likelihood estimation is that choice of ® that
it maximizes L(®). In the general case, seeking an exact
solution to the nonlinear problem is computationally diffi-
cult. Here we adopt the Expectation Maximization (EM)
algorithm [15], which has many advantages such as reliable
convergence, economy of storage and ease of implementa-
tion. The EM algorithm is an iterative method, which tries
to improve the current estimate with a two-step process

at each iteration. If the current estimate is ®¢, the next
estimate ®1 will be:
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for e =1,2,---,m. The iterative process stops when a pre-
determined condition is satisfied. For simplicity, we choose
m and f (the parameter used in the MAP estimate to spec-
ify the linkage strength of a neighborhood) manually.

The EM algorithm is applied in steps 2, and 4 of the
segmentation algorithm. The initial values of ® for the
EM algorithm are assigned as follows: First divide the his-
togram of the scale 1 phase into m parts with equal area.
Then take the mean and variance of those values in each
part as the initial mean and initial variance. For step 4, the
initial value of ® comes from estimating the coarse label
fields, which are obtained from the previous steps.

5. EXPERIMENTAL RESULTS

Some experimental results on segmentation with the
WPT phase are presented here. The image in Figure 1(a)
consists of a 256 x 256 image of a wood fence and its 90°
rotated version. We segment in two parts. The image is
transformed first and the bandpass image phase is used to
provide the scale 1 segmentation. The result is shown in
Figure 1(b) which clearly shows the division into two parts.
Figure 1(c) shows the result using the same algorithm as

(a) Wood fence

(d) Segmentation with WPT phases

(c) Segmentation with lowpass filter

(e) Segmentation with lowpass filter
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Figure 1: Wood fence segmentation, (b)(c) scale 1, (d)(e)
scale 0

with WPT phase, except the scaled intensity images us-
ing lowpass (Haar) filtering is used for the features. Figure
1(d) and 1(e) show the segmentation results after scale 0
refinements.

Another example is shown in Figure 2. Here, an image
of a brick wall is embedded in an image of metal grates.
Class number is preset to 2. The WPT phase-based seg-
mentation algorithm is applied, and the scale 1 and scale
0 results are shown in parts (b) and (d). Segmentation
results with conventional multiresolution algorithm are dis-
played in parts (c) and (e), corresponding to scale 1 and
scale 0. They conform to gray scale effects, as we expect.

6. DISCUSSION AND CONCLUSION

Modeling phase data with a Gaussian mixture distribu-
tion and segmenting an image based on this and a MRF
model, leads to segmentation based on local edge direc-
tions. To achieve good segmentation, the phase data should
have a good concentration along distinct major directions.
To achieve this, we use a 5 x 5 median filter to regularize
the phase to within a [—F, 7] interval. This nonlinear pre-
processing greatly improves data concentration, thus im-
proving segmentation. In Figure 3, four images are listed
in the first column. They are derived from rotating a simu-
lated texture shown in the upper-left corner, by 0°,30°, 60°
and 90° degrees respectively. Phase histograms are shown
in the second column, and again after median filtering, in
the third column. The effect of median filtering in improv-
ing data concentration is clear. We observe different phase
histograms where intensity histograms would be similar.

By modeling textures as patterns that differ significantly
in their dominating edge directions, we have provided a
computational multiresolution framework for texture seg-
mentation. We have added local Fourier phase to the clas-
sic framework of MRF models with the EM algorithm to



(a) Metal grates and brick wall
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(b) Segmentation with WPT phases

(c) Segmentation with lowpass filter

predict the Gaussian parameters and iterated conditional
modes for image segmentation. Results conform to our vi-
sual system for textures having strong local edge directions.
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