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ABSTRACT

This paper is concerned with the blind identification of
bilinear systems excited by higher-order white noise. Un-
like prior work that restricted the bilinear system model to
simple forms and required the excitation to be Gaussian dis-
tributed, the results of this paper are applicable to a more
general class of bilinear systems and for the case when the
excitation is non-Gaussian. We describe an estimation pro-
cedure for the computation of the system parameters using
output cumulants of order less than four.

1. INTRODUCTION

We consider bilinear systems of the form

s = 3 e+ bu(n i)

+3 ) eli Dy(n —iyu(n - j) +v(n) (1)

j=1 i=j

where y(n) is the output of the system, u(n) its input and
v(n) the measurement noise. We assume that b(0) = 1,
c(Keu, Keu) # 0, Kew > Ky, and C, the matrix of coeffi-
cients c(i,7), is lower triangular. We assume also that the
measurement noise v(n) belongs to a Gaussian white pro-
cess with zero mean value and is independent of the input,
and that the input signal u(n) is a higher-order white pro-
cess that has zero mean value and is not necessarily Gaus-
sian distributed. The cumulants of u(n) are given by

cumfu(n),u(n — 1), -, u(n — ly_1)] =
7k6(l17 ) lkfl) (2)
where 6(l1,- -, lx—1) is the (k—1) dimensional unit impulse

signal and ~ denotes the signal intensity of order k. The
coefficients a(7), b() and c(3, j) are such that y(n) is a sta-
tionary process. Sufficient conditions for the stationarity of
bilinear processes are derived in [1, 4, 5]. The blind iden-
tification problem addressed in this paper is formulated as
follows. Given the system orders K, Ky, K¢, and K.y and
the output statistics, determine the system parameters a(i),
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b(7) and c(i, 7), as well as the higher-order signal intensities
~2, ¥3, ¥4 and 75 associated with the input signal u(n).

Closed form expressions that relate measurable statis-
tics of the output signal to the parameters that must be es-
timated are available only for a very restricted class of non-
linear system models [6, 7]. Consequently, the most com-
mon approach to estimating the parameters of the model is
to resort to some form of numerical search algorithm that
operates in an iterative manner [8]. This paper describes
a set of equations that relate parameters of the system in
(1) to cumulants of the output signal up to order four, and
then provides a direct method for estimating the parame-
ters based on these relationships.

The rest of this paper is organized as follows. The next
section describes the blind estimation procedure. The es-
timation is performed in a sequential manner. The coeffi-
cients a(i) are estimated first, and the estimated parame-
ter values are employed to find the remaining parameters.
Because of space limitations, we only describe the method-
ology employed in our approach. Complete derivations will
be presented in [3]. The concluding remarks are made in
Section 3.

2. BLIND ESTIMATION OF THE
PARAMETERS

2.1. Estimation of a()

The first stage of the blind estimation algorithm involves
the computation of the a(i) parameters through the out-
put covariance céz)(l) = cum[y(n),y(n —1)]. It is relatively
straightforward to show that the covariance function of the
output signal satisfies the following results for sufficiently
large values of the lag:

Proposition 1. Let L > K = max(Kp, Kcu). Then,
the output covariance sequence satisfies the autoregressive
model

(L) =" a(i)e (L —i). 3)

Proposition 1 states that the output covariance sequence
behaves in a manner that is identical to the covariance func-



tion of an autoregressive signal for sufficiently large values
of the lag [. This property enables the computation of the
a(i) parameters with the aid of the second-order statistics
and a linear system Toeplitz solver such as a variant of the
Levinson algorithm [2].

Estimation of the c(i,j) coefficients relies on the third
and fourth order cumulant sequences

¢, (11, 1o) = cum[y(n), y(n — L),y(n = 1)) (4)

and

i (11,12, 13) = cum[y(n), y(n—11), y(n—1l2), y(n—13)]. (5)

The behavior of the cumulants of order 3 or 4 when all
arguments 1, [2 and [3 are large is easy to predict. Similar
to the results in Proposition 1, we can show that c§3)(l1, l2)
and c§,4)(l1, l>,13) satisfy the same autoregressive model:

Kq
053)([/1, Ly) = Za(i)cg(f’)(Ll — i, La —1);
=1
Li, Ly > K (6)
and
Kq
e§(L1, Lo, Ls) = Y a(i)ef (Ly — i, Ly — i, Ls — i);
=1

Li, Lo, L3 > K. (7)

2.2. Estimation of the Last Column of C'

To estimate the remaining parameters b(:) and c(i,j) re-
quires the derivation of relationships that relate the cumu-
lants for smaller lag values through these coefficients. To
derive such relationships in a manageable fashion we hold
one of the arguments at a large value and analyze the cumu-
lants as the remaining lag values fall in the range 0 <1 < K.
The following result allows the estimation of the last column
of the coefficient matrix C.

Proposition 2. Let

Dy(l) = —i;:a(i)c,gz)(l —i)  a(0)=-1, (8)
Ds(ly, 1) = — ia(i)cf’)(ll —i,l> — i) 9)
and -
Da(ly, 15, 13) = — ia(i)cg‘)(zl —i,la — i, I3 —i).  (10)
Then )
D3(K,L) = > % c(iy Kew)eS? (L = 9) (11)

i=Key

and
Key
Dy(K,K,L) = 2y Y c(i,Keu)el” (K =i, L — 1)
1=Kecu
3
+ 2 Dy(K, L). (12)
Y2

The quantities Dy, () can be computed from the out-
put cumulants since the parameters a(z) have already been
computed. Application of (11) for K.y — K¢ + 1 different
values of L enables us to determine the last column of C
scaled by the input variance 2. Furthermore, evaluation of
(12) at a value of L such that Ds(K, L) # 0, enables us to
determine the ratio ys/v2.

2.3. Estimation of b(K)

We analyze the statistics of the output signal sequentially,
starting with lag values of K, and then descending to smaller
lag values. The following expressions provide useful infor-
mation for lag values equal to K.

Key
D2(K) = 72b(K) + 572 »_ oli, K) +73c(K, K)  (13)
i=K
Key
Dy(K,K) = ysb(K)+gys »_ cli, K) + yac(K, K)
i=K
Key
+292 ) (i, K)el? (K — i) (14)
i=K
Koy
Dy(K,K,K) = vab(K)+ gy Y _ c(i, K) + ysc(K, K) +
i=K
Koy
+37, i, K)ey? (K — i, K — i)
i=K
Koy
+373 > eli, K)ey? (K — i) (15)
i=K

In the above expressions 3 denotes the mean value of y(n).
Equation (13) yields v2b(K). Equations (14) and (15) pro-
vide y4/7v2 and s /72.

2.4. Estimation of Other Parameters

The remaining calculations require the definition of the fol-
lowing parameters:

K
Ss(m,L) = — a(l —m)Ds(l, L), 1<m<K-1
l=m
(16)
and
K
Sa(m,K,L) = — a(l-m)D4(l, K, L), 1<m<K-1
I=m
(17)



The estimation of the remaining columns of C relies on
expressions of the following form:

Key
Si(K = 1,K,L) +a(l)yy Y c(i, K)ol (K —i, L — i)
1=K
Key
—72 D eli, K)elP (K —1—i, L — i) =
i=K
Key
> [Da(K)eP (1 =i, L— K +1—1i) +
=1

<D3(K, K) = Z e(n, K)elP) (K — n)> X

n=K

x L —K+1—1i)+

Key
Yo Z c(n, K) x
n=K
xcP(n—K+1-i1—i,L—K+1—i)+
Key
+y5 Y e, K)elP(n— K +1-i,L—K+1-1i)
n=K
Key
+ya Y eln, K)el? (L —n)d(i 1) +
n=K
Key
Y2 Y eln, K)e (L —n)el (1—i) +
n=K
Key
§rs Y e(n, K)elP (L —n) +
n=K
Key
+ys > e(n, K)ef (K —n, L —n)d(i — 1) +
n=K
Key
Y2 Z c(n, K)cz(,?’)(K —n,L— n)] c(i, 1) +
n=K
+y2e(K —1, K = 1)l (1,L — K + 1) +
Key
S~ (poeli, K = 1)+ b(D)yoc(i, K)) i (K — i, L — i) +
i=K
Key
+ (b(l)ﬁ +yac(1, 1)) Yo Y eli, K)ol (L =), (18)
72 i=K

The above equation evaluated for different choices of
L leads to a linear system of equations with the following
groups of unknowns:

1. The first column of C, c¢(i,1)
2. The term vyoc(K — 1, K — 1)

3. A linear combination of the last two columns of C':
~voc(t, K — 1) + b(1)y2c(4, K).

4. The term b(1)22 + y2¢c(1, 1).

We estimate the four unknown groups of parameters by
solving the system of linear equations resulting from (18).
In group 4 we have one linear equation with unknowns b(1)
and 2, since y3/72 and ¢(1,1) are already available from
prior calculations. A second equation for b(1) and 2 is
obtained using an expression similar to (18) for S3(K —1, K)
and given by

Key
Ss(K —1,K) +a(l)y »_ i, K)ef? (K — i) —
1=K
Key key
V2 Zc(i,K) Zc(n, 1)03(,3)(1' —-K+1—-n,1—n)—
i=K n=1
Key key
v D cli, ) e(n, 1)ef (i — K +1—n) -
i=K n=1
Key
v 3 el K)el? (K —1—i) —
i=K
Key
yso(K, K)e(1,1) = yac(K, K) > cli, ey (1 - i) —
=1
Key
yao(K, K)g (i, 1) = (K — 1, K = 1)c? (1) —
i=1
Key

=) (ecli, K = 1) + b(1)y2¢(i, K)) o) (K — i)

—c(1,1)98 Y e(i, K)ei? (K — i) —
. =K .
-7 Z (i, 1)z Z e(n, K)cf) (K —n)
i=1 n==k
—c(1,1)74 (b(K) +7 Y cli, K)) -
- Z c(i, 1)y2 (b(K) + 7 c(n, K)) céz)(l —i) -
77 (b(K) +7 Y cli, K)> > eln,1)
=b(1) lwuc K) + 73 (b(K) +y Y el K>> +
Y2 lz’wac(x, K)e(1,1) +e(1,1)7 (b(K) +y Y i, K)

The determinant of the above system is

C C 4_3_’732
(L )e(K, K) <v 72)



Provided that c(1,1) # 0, c¢(K,K) # 0 and 4 # 372/72,
b(1) and ~» are uniquely determined. It is shown in [3] that
the above assumption can be relaxed if we use cumulants of
order 5. Having determined b(1) and 2 we return to groups
2 and 3 and compute the K — 1 columns of C. Finally
b(K — 1) is obtained from S>(K — 1) as

b(K - 1)’)/2 =
S2(K —1) —y3c(K —1,K — 1) — gyc(K —1,K — 1)
Key
=5 (y2e(i, K = 1) + b(1)y2c(i, K))
i=K
Key

~Da(K)y Yy (i, 1)

Key key
—72 Z c(i, K) Z c(n, 1)(:52)(1' —K+1-—n)
i=K n=1

—c(1,1) lw, (b(K) +7 Y cli, K)) + yac(K, K)]
=b(1) (12b(K) + ysc(K, ;()) — 7272¢(K, K)e(1,1).(20)

In summary, (18)-(20) lead to the estimation of the first
column of C, ¢(i,1), the (K —1)th column of C, ¢(i, K — 1),
b(1), b(K —1) and 2. The remaining parameters can be de-
termined in a similar manner through successive evaluation
of S4(I,K,L), S3(l,K) and Sz(I) for =K —2,K —3,---.

3. CONCLUDING REMARKS

This paper has dealt with the blind identification of bilinear
systems from measurements of the output signals. The pa-
rameters are determined via a sequence of linear systems in-
volving cumulants up to order four. Unlike prior work that
restricted the bilinear system model to simple forms and re-
quired the excitation to be Gaussian distributed [6, 7], the
results of this paper are applicable to a more general class
of bilinear systems and for the case when the excitation is
non-Gaussian.
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