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ABSTRACT

The paper statistically analyzes the behaviour of chaotic water-
mark signals generated by n-way Bernoulli shift maps. For this
purpose, a simple blind copyright protection watermarking system
is considered. The analysis involves theoretical evaluation of the
system detection reliability, when a correlator detector is used. The
aim of the paper is twofold: (i) to introduce the n-way Bernoulli
shift generated chaotic watermarks and theoretically contemplate
their properties with respect to detection reliability and (ii) to the-
oretically establish their potential superiority against the widely
used pseudorandom watermarks. Experimental verification of the
theoretical analysis results is also performed.

1. INTRODUCTION

The risk of illegal copying, reproduction and distribution of copy-
righted material is becoming more threatening with the all-digital
evolving solutions adopted by content providers, system design-
ers and users, thus creating a pressing demand for copyright pro-
tection of multimedia content. This demand has been lately ad-
dressed by the emergence of a variety of watermarking methods.
The main trend is to use pseudorandom watermarks, which attain
important properties for a watermarking application, such as auto-
correlation function in the form of a Dirac delta function, unpre-
dictability and statistical undetectability. Furthermore, the most
widely used detector is the correlator. Up to now, the foundation
for performance evaluation of the majority of watermarking meth-
ods has been mainly experimental without theoretical justification
of their efficiency. Only few ones have attempted to statistically
analyze the performance of image watermarking schemes [1, 2].

This paper statistically analyzes the behaviour of chaotic wa-
termark signals generated by n-way Bernoulli shift maps. For this
purpose, a simple blind copyright protection watermarking sys-
tem is considered. The analysis involves theoretical evaluation of
the system detection reliability, when a correlator detector is used.
The effect of distortions (lowpass filtering, noise corruption) on
the detection reliability is also theoretically investigated. The aim
of the paper is twofold: (i) to introduce the n-way Bernoulli shift
generated chaotic watermarks and theoretically contemplate their
properties with respect to detection reliability and (ii) to theoreti-
cally establish their potential superiority against the widely used
pseudo-random watermarks. Chaotic watermarks attain similar

This work has been funded by the LTR-ESPRIT European Project
31103 - INSPECT

desirable properties with pseudorandom ones with the additional
feature of controllable spectral/correlation properties.

2. WATERMARKING SYSTEM MODEL

Let Xi ; i 2 [1; N ] be samples of the 1-D continuous valued host
signal X of length N . Let also Vi ; i 2 [1; N ] be the samples
of the continuous valued watermark signal V generated by a wa-
termark generation function g: V = g(N;K). K denotes the
watermark key. The watermark signal is assumed to be zero mean
i.e. E[Vi] = 0. We assume that V is embedded additively to X,
thus generating the watermarked signal Xw = X+ pV, where p
is a factor that determines the watermark strength.

Given a signal S0, watermark detection aims at finding whether
S
0 hosts a certain watermark W0 = g(N;K0). Thus, watermark

detection can be formulated as a hypothesis test, the two hypothe-
ses (events) being the following:

� H0: W0 is indeed embedded in S0.

� H1: S0 does not hostW0.

Event H1 occurs either if S0 is not watermarked (event H1a) or if
S
0 is marked with a different watermarkW = g(N;K

00

) than the
one that we are trying to detect (event H1b). Thus H1 = H1b [
H1a where H1a, H1b are mutually exclusive. If the host signal
has not been distorted, the form of S0 for the three events H0,
H1a, H1b can be summarized in: S0 = S+ pW. For p = 0, this
results in S0 = S which corresponds to H1a, whereas for p 6= 0
andW =W0, S0 = S+ pW0 which corresponds to H0. Finally,
for p 6= 0 andW 6=W0, we get the form of S0 under H1b.

During watermark detection, the correlation c between S0 and
W

0 is calculated: c = 1
N

PN

i=1(SiW
0
i + pWiW

0
i ). In order to

decide on the valid hypothesis, c is compared against a suitably se-
lected threshold T . The system performance for a given threshold
can be measured in terms of the false alarm probability Pfa(T ),
(i.e., the probability to detect a watermark in a signal that is not
watermarked or is watermarked with a different watermark) and
the probability of false rejection Pfr(T ) (i.e., the probability to
erroneously neglect the watermark existence in the signal):

Pfa(T ) = Probfc > T jH1g =

Z 1

T

fH1
(t)dt (1)

Pfr(T ) = Probfc < T jH0g =

Z T

�1

fH0
(t)dt (2)

fH0
; fH1

are the probability density functions of c under hypothe-
ses H0, H1 respectively. By solving (1), (2) for the independent



variable T and equating the results, Pfr can be expressed as a
function of Pfa. The plot of Pfa versus Pfr is called the receiver
operating characteristic (ROC) curve of the watermarking system.
This curve conveys all the necessary system performance informa-
tion. For the studied watermark sequences, fH0

, fH1a , fH1b
are

normal distributions, as will be shown. Then, the ROC curve is
given by:

Pfa =
1

2
[1� erf[

p
2�H0

erf�1(2Pfr � 1) + �H0
� �H1p

2�H1

]] (3)

The mean value of c, �c, and its variance, �2c , for both H0 and
H1, assuming independence betweenW and S, are given by:

�c =
1

N

NX
i=1

E[Si]E[W 0
i ] +

1

N

NX
i=1

pE[WiW
0
i ] (4)
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0
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0
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An assumption about the statistical properties of S has also to
be made: it is assumed wide-sense stationary, i.e., �S = E[Si],
E[SiSi+k] = �S;S(k), 8i i 2 [1; N ], described by a first order
separable autocorrelation function [1]:

�S;S(k) = �2S + �2S�
k; k � 0 (6)

where �2S is the signal variance and � = 0:9; � � � ; 0:99.

3. WATERMARKS GENERATED BY N -WAY
BERNOULLI SHIFT MAPS

n-way Bernoulli shifts Bn(r) are chaotic maps defined by: Bn :
[0; 1] ! [0; 1], r0 = Bn(r) = nr(mod 1). This map belongs to
the class of piecewise affine Markov maps. A watermark sequence
is generated by the map’s recursive application:

Wi+1 = Bn(Wi) = nWi(mod 1) i 2 [1; N ] (7)

The sequence starting point W1 (map’s initial condition) is con-
sidered as the watermark key K. The uniform distribution is an
invariant probability density for the n-way Bernoulli shift maps
[3, 4]. Watermark signals (Bernoulli chaotic watermarks), gener-
ated in this way, are wide-sense stationary. To attain zero mean,
the following modification is done:

Bn : [�0:5; 0:5] ! [�0:5; 0:5]

Wi+1 = Bn(Wi) = n(Wi +
1
2
)(mod 1)� 1

2
(8)

Sample Wi+k is derived from sample Wi through [4]:

Wi+k = nk(Wi + 0:5)(mod 1)� 0:5 k > 0 (9)

Thus, the output of an n-way Bernoulli shift map after k iterations
(denoted by Bk

n) is equal to that of a nk-way Bernoulli shift map:

Wi+k = Bk
n(Wi) = Bnk (Wi) k > 0 (10)

If the starting point W1 of the map is an irrational number, the
generated sequence exhibits a chaotic, non-periodic behaviour [5].
Thus, if one considers two Bernoulli chaotic watermarksW,W0

generated by the iterative application of the same map Bn on two
distinct, irrational starting points (watermark keys) W1, W 0

1, both
belonging to the same chaotic orbit, there will always be an integer
k > 0 such that:

W 0
1 = Bk

n(W1) OR W1 = Bk
n(W

0
1) (11)

Consequently, their samples W 0
i , Wi will also be associated by

(8i, i 2 [1; N ]):

W 0
i = Wi+k = Bk

n(Wi) OR Wi = W 0
i+k = Bk

n(W
0
i ) (12)

These corollaries are used for the derivation of joint moments of
Bernoulli chaotic watermarks. Bernoulli maps are characterized
by uniform invariant density. Based on this, the m-order moments
for Wi are calculated:

E[Wm
i ] =

Z 0:5

�0:5

xmf(x)dx =

�
0 m odd
1

(m+1)2m
m even (13)

The derivation of the joint moments of W, W0 appearing in
(4), (5), for Bernoulli chaotic watermarks is reported in [6]. One
of the joint moments is the autocorrelation function RWW (k):

RWW (k) = E[WiWi+k] =
1

12nk
k � 0 (14)

By observing (14), one concludes thatWi andWi+k are correlated
for small values of k and n. Convergence, though, occurs quickly
as k increases, even for small n. As n increases, the autocorrela-
tion function of the Bernoulli chaotic watermarks approximates a
Dirac delta function, i.e., the autocorrelation function, ideally, of
random watermarks. Thus, n controls the correlation properties of
Bernoulli chaotic watermarks. Based on that, it is easily derived
that, for small values of n, Bernoulli chaotic watermarks are char-
acterized by lowpass spectrums, while, as n increases, the latter
tend to be white, thus converging towards the spectrum of random
watermarks. In short, it is concluded that n controls the correla-
tion/spectral properties of Bernoulli chaotic watermarks. By ap-
propriately choosing n, Bernoulli chaotic watermarks can attain
the best possible performance for the application at hand.

Substituting the evaluated expressions in (4) and (5), analytical
expressions for �c and �2c are derived for a watermarking system
based on Bernoulli chaotic watermarks:

�c =
p

12nk
(15)

Due to its extensive length, the expression of �2c is ommitted. The
reader may consult [6]. These expressions can be used to obtain
�c and �2c for events H0 (W = W

0) by setting k = 0, H1b

(W 6= W0) by setting k 6= 0 and H1a by setting p = 0. �2c for
event H1b proves to be greater than that for event H1a. �c is larger
for small k > 0 but converges to that for H1a, as k increases.
Thus, event H1b is the worst case in terms of bigger probability
errors than H1a or H1.

Although Bernoulli chaotic watermarks prove to be correlated
for small k > 0, the Central Limit Theorem for random vari-
ables with small dependency [7] may be used in order to estab-
lish that c attains a Gaussian distribution, even for event H1b (as-
suming that N is sufficiently large). Furthermore, under the worst



case assumption, both �c and �2c converge to a constant value for
large k. For such k, RWW (k) = 0 meaning that E[WiWj ] =
E[Wi]E[Wj ] = 0. Thus, the terms of the sum in c can be consid-
ered sufficiently independent and the distribution of c under event
H1b for k !1 can be assumed normal. In such a case, Pfa;H1b

can be estimated using the limit values of �c and �2c as k ! 1.
This is done since convergence is actually quickly reached leading
to a very small probability (for large N ) of actually facing a case
where k is rather small. Pfr values are estimated using the values
of �c and �2c for k = 0 and ROC curves are evaluated from (3).

4. PSEUDORANDOM WATERMARKS

Zero-mean pseudorandom sequences in [�0:5; 0:5] are considered.
Such sequences attain a white spectrum. Furthermore, for such
watermarks, the terms of the sum in c can be safely assumed to be
sufficiently independent. Thus, due to the Central Limit Theorem,
c attains a Gaussian distribution for a sufficiently large N . Based
on their properties, the moments of (4), (5), are easily obtained:

E[Wm
i ] =

�
0 m odd
1

(m+1)2m
m even (16)

E[W l
iW

m
j ] = E[W l

i ]E[Wm
j ] (17)

Similar expressions can be derived for the moments involving more
than two random variables. Using these, �c and �2c for a water-
marking system based on random watermarks can be calculated:

�c =

8<
:

p
12

ifW =W0

0 ifW 6=W0

0 if p = 0
(18)

�2c =

8><
>:

1
12N

(�2S + �2S + p2

15
) ifW =W0

1
12N

(�2S + �2S + p2

12
) ifW 6=W0

1
12N

(�2S + �2S) if p = 0

(19)

It is seen that c attains the same mean value for both eventsW 6=
W

0 and p = 0, while its variance for the first event is larger than
that for the second, proving that the first event is the worst case.

5. NOISE ADDITION

S
0 = S + pW is assumed to be corrupted by additive random

white i.i.d. noise � uniformly distributed in the interval [��r; �r].
� has zero mean value, �� = 0, and variance equal to �2� = �2r=3.
W may be either a chaotic watermark or a random one. Detection
involves estimation of the correlation between the noise corrupted
signal S0 + � and a watermark W0, i.e.: c� = 1

N

PN
i=1(S

0
i +

�i)W
0
i . � does not modify the correlator’s Gaussian distribution

since it is independent of the other signals. In order to determine
the influence of noise addition on the system’s detection reliability,
the mean value �c� and variance �2c� of c� must be estimated:

�c� =
1

N

NX
i=1

�
E[Si]E[W 0

i ] +E[�i]E[W 0
i ] + pE[WiW

0
i ]
�
(20)

For Bernoulli chaotic watermarks, (20) leads to �c� = p

12nk
. For

random watermarks, we obtain:

�c� =

�
p

12
; ifW =W0

0; ifW 6=W0 or p = 0
(21)

Its variance �2c� is given by:

�2c� =
1

N2
E[

NX
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((Si + pWi + �i)W
0
i )
2 +

NX
i=1

NX
j=1;j 6=i

((Si + pWi + �i)W
0
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((Sj + pWj + �j)W
0
j)� �2c� = �2c +

�2r
36

(22)

where �2c denotes the correlator variance under no distortions. It is
seen that noise corruption is not a serious threat, since it does not
affect the mean value of the correlation and only slightly influences
its variance, provided that its power is much less than that of the
original signal. Furthermore, noise corruption affects the system
performance similarly for either random or chaotic watermarks.

6. LINEAR LOWPASS FILTERING

We consider a moving average filter of length 2F + 1 with the
impulse response hi = 1

2F+1
, i 2 [�F; F ]. The filtered signal

S
0
f is obtained by the linear convolution: S0f;i = S0i � hi =PF
l=�F hlS

0
i�l, i 2 [1; N ]. The correlator detector estimates

now the correlation cf between S0f and a watermark W0: cf =
1
N

PN
i=1

PF
l=�F hl(Si�l + pWi�l)W

0
i Filtering does not also

modify the correlator Gaussian distribution. �cf and �2cf are now
evaluated by:

�cf =
1

N

FX
l=�F

hl

NX
i=1

(E[Si�l]E[W 0
i ] + pE[Wi�lW

0
i ]) (23)

For the case of Bernoulli chaotic watermarks, (23) becomes:

�cf =

8>>>><
>>>>:

p
12(2F+1)

1
nk

�
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1�( 1
n
)F�n+nF+1

n�1

�
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p
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n
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n
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�
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When random watermarks are used, (23) leads to:

�cf =

� p

12(2F+1)
; ifW =W0

0; if p = 0 orW 6=W0 (25)

Estimation of �2cf is performed as follows:

�2cf =
PF

l=�F h
2
lE[c2] + 1

N2

PF
m=�F

PF
n=�F;n6=m hmhnhPN

i=1(E[Si�mSi�n]E[W 02
i ] + p2E[Wi�mWi�nW

02
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PN
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PN

j=1;j 6=i(E[Si�mSj�n]E[W 0
iW

0
j ]+

p2E[W 0
iW

0
jWi�mWj�n])

�� �2cf (26)

In (26), E[c2] = �2c + �2c denotes the 2nd moment of c under no
distortions for any kind of watermarks. For the case of Bernoulli
chaotic watermarks, �2cf has been numerically estimated for pre-
defined values of N , n and F . Such numerical estimation is prone
to errors dependent on the computational accuracy. For random
watermarks, (26) leads to an expression outlined in [6], due to pa-
per length constraints.



7. EXPERIMENTAL RESULTS

In order to empirically verify the watermarking system perfor-
mance in terms of ROC curves, the system is fed with two input
signals: a music audio signal and a random uniformly-distributed
signal, appropriately prefiltered to comply with model (6). Slightly
better performance is obtained in the case of perfect validity of (6),
i.e. random signal. The system performance is measured for both
Bernoulli and random watermarks to enable their comparison. The
value of p is set such that the watermarked signal has SNR=30dB.
10000 keys are used in the experiments. ROC curve estimation is
performed under the worst case assumption, (event H1b).

The achieved ROC curves under no attack, for varying n and
the audio signal as input, are shown in Figure 1a. The coincidence
of the theoretical and empirical ones is noted. Respective curves
are illustrated for random watermarks. It is seen that the latter
attain the best performance with respect to the overall error proba-
bility. However, as n increases, the performance of Bernoulli wa-
termarks is quickly converging to that of random ones, since their
lowpass spectral properties tend to white with increasing n. In Fig-

(a) (b)

Fig. 1. Theoretical and empirical ROCs for Bernoulli chaotic and
random watermarks after (a) no attack, (b) noise addition.

ure 1b, respective results are shown after noise addition. Similar
conclusions are drawn. Noise of small power does not greatly af-
fect the system performance: Pfa and Pfr values are only slightly
increased.

The system performance is also evaluated after lowpass filter-
ing. Figure 2a shows both the theoretically and experimentally
derived ROC curves after moving average filtering (length 3) of
the watermarked audio signal for Bernoulli and random water-
marks. Both types of results tend to be similar. The numerical
estimation of the theoretical �2cf for Bernoulli watermarks has its
impact on the ROC curves. Use of the latter leads to better per-
formance, especially for small values of n, compared to random
watermarks. This is easily justified by their lowpass spectral prop-
erties for small n, which renders them robust against lowpass dis-
tortions. In order to establish this, lowpass filtering of random wa-
termarks prior to embedding was done, so that they attain similar
spectral/correlation properties with Bernoulli watermarks for vari-
ous n. Figure 2b shows the experimentally estimated ROC curves
for LP random watermarks and for varying n, after moving aver-
age filtering of length 3 and for the random signal as input, com-
pared against the ones obtained when using respective Bernoulli
watermarks. They are nearly identical proving that the watermark
spectrum plays a significant role in watermarking applications.

(a) (b)

Fig. 2. (a) Theoretical and empirical ROC curves for Bernoulli
chaotic and random watermarks after lowpass filtering, and (b)
empirical ROC curves for Bernoulli chaotic (solid lines) and ran-
dom watermarks (dashed lines), prefiltered to attain similar spec-
tral/correlation properties with the chaotic ones.

8. CONCLUSIONS

The n-way Bernoulli shift generated chaotic watermarks are in-
troduced and their statistical properties relevant to a watermarking
application are investigated to determine the overall system perfor-
mance under no distortions or simple attacks. Similar investiga-
tion is performed for pseudorandom watermarks, for comparison
purposes. Bernoulli chaotic watermarks attain controllable spec-
tral/correlation properties dependent on the value of n. They can
be easily constructed with the appropriate spectral properties ac-
cording to the prospective application or potential distortion, while
preserving their invariant probability density. Random watermarks
should be preprocessed to exhibit similar efficiency. Such prepro-
cessing modifies their initial probability distribution which enables
the risk of possible perceptibility.
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