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ABSTRACT

The paper statistically analyzes the behaviour of chaotic water-
mark signals generated by n-way Bernoulli shift maps. For this
purpose, asimple blind copyright protection watermarking system
is considered. The analysis involves theoretical evaluation of the
system detection reliability, when acorrelator detector isused. The
aim of the paper istwofold: (i) to introduce the n-way Bernoulli
shift generated chaotic watermarks and theoretically contemplate
their properties with respect to detection reliability and (ii) to the-
oreticaly establish their potential superiority against the widely
used pseudorandom watermarks. Experimental verification of the
theoretical analysis resultsis also performed.

1. INTRODUCTION

Therisk of illegal copying, reproduction and distribution of copy-
righted material is becoming more threatening with the all-digital
evolving solutions adopted by content providers, system design-
ers and users, thus creating a pressing demand for copyright pro-
tection of multimedia content. This demand has been lately ad-
dressed by the emergence of a variety of watermarking methods.
The main trend isto use pseudorandom watermarks, which attain
important properties for awatermarking application, such as auto-
correlation function in the form of a Dirac delta function, unpre-
dictability and statistical undetectability. Furthermore, the most
widely used detector is the correlator. Up to now, the foundation
for performance evaluation of the mgjority of watermarking meth-
ods has been mainly experimental without theoretical justification
of their efficiency. Only few ones have attempted to statistically
analyze the performance of image watermarking schemes [1, 2].
This paper statistically analyzes the behaviour of chaotic wa-
termark signals generated by n-way Bernoulli shift maps. For this
purpose, a simple blind copyright protection watermarking sys-
tem is considered. The analysis involves theoretical evaluation of
the system detection reliability, when a correlator detector is used.
The effect of distortions (lowpass filtering, noise corruption) on
the detection reliability is also theoretically investigated. The aim
of the paper is twofold: (i) to introduce the n-way Bernoulli shift
generated chaotic watermarks and theoretically contemplate their
properties with respect to detection reliability and (ii) to theoreti-
caly establish their potential superiority against the widely used
pseudo-random watermarks. Chaotic watermarks attain similar
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desirable properties with pseudorandom ones with the additional
feature of controllable spectral/correlation properties.

2. WATERMARKING SYSTEM MODEL

Let X; ,i € [1, N] be samples of the 1-D continuous valued host
signal X of length N. Letaso V; ,i € [1,N] be the samples
of the continuous valued watermark signal V generated by a wa-
termark generation function g: V = ¢(V, K). K denotes the
watermark key. The watermark signal is assumed to be zero mean
i.e. E[V;] = 0. Weassume that V is embedded additively to X,
thus generating the watermarked signal X,, = X + pV, wherep
is afactor that determines the watermark strength.

Givenasignal S’, watermark detection aims at finding whether
S’ hosts a certain watermark W' = g(IN, K'). Thus, watermark
detection can be formulated as a hypothesis test, the two hypothe-
ses (events) being the following:

e Hy: W' isindeed embedded in S'.

e H;: S’ doesnot host W'.

Event H; occurs either if S’ is not watermarked (event Hy,) or if
S’ ismarked with a different watermark W = g(N, K’ ) than the
one that we are trying to detect (event Hy). Thus Hy = Hy, U
H,, where Hy,, Hy;, are mutualy exclusive. If the host signal
has not been distorted, the form of S’ for the three events Hy,
H,, Hy, can besummarized in: ' = S + pW. For p = 0, this
resultsin S’ = S which corresponds to H;,,, whereas for p # 0
and W = W', S’ = S + pW' which corresponds to Hy. Finally,
forp # 0 and W # W', we get the form of S’ under H,,.
During watermark detection, the correlation ¢ between S’ and
W' iscaculated: ¢ = = SN (SiW/ + pW;W/). In order to
decide on thevalid hypothesis, ¢ is compared against asuitably se-
lected threshold T'. The system performance for a given threshold
can be measured in terms of the false alarm probability Pr,(T'),
(i.e., the probability to detect a watermark in a signal that is not
watermarked or is watermarked with a different watermark) and
the probability of false rejection Py, (T') (i.e., the probability to
erroneously neglect the watermark existence in the signal):

Pr(T) = Prob{c> T|Hy} = / T fnde (1)
T

Py (T)

T
Prob{c < T|Ho} = / fuo®)dt  (2)

fuy, fu, arethe probability density functions of ¢ under hypothe-
ses Hy, H; respectively. By solving (1), (2) for the independent



varisble T' and equating the results, Py, can be expressed as a
function of Py,. The plot of Py, versus Py, iscalled the receiver
operating characteristic (ROC) curve of the watermarking system.
This curve conveys all the necessary system performance informa-
tion. For the studied watermark sequences, fu,, fu.,, fu,, are
normal distributions, as will be shown. Then, the ROC curve is
given by:

V2om,erf~ (2P, — 1) + pa, — pum,
V20m,

The mean value of ¢, ju., and its variance, o2, for both H,, and
H,, assuming independence between W and S, are given by:
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An assumption about the statistical properties of S has also to
be made: it is assumed wide-sense stationary, i.e., us = E[S;],

E[S;Si+x] = I's,s(k), Vi i € [1, N], described by afirst order
separable autocorrelation function [1]:

Ts,s(k) = us +osa”, k>0 (6)

where 0% isthe signal varianceand a = 0.9, - - -, 0.99.

3. WATERMARKSGENERATED BY N-WAY
BERNOULLI SHIFT MAPS

n-way Bernoulli shifts B,, () are chaotic maps defined by: B, :
[0,1] — [0,1], ¥ = By, (r) = nr(mod 1). This map belongs to
the class of piecewise affine Markov maps. A watermark sequence
is generated by the map’s recursive application:

Wisr = B,(Wi) =aWi(mod1) i€ [L,N]  (7)

The sequence starting point 1W; (map’s initial condition) is con-
sidered as the watermark key K. The uniform distribution is an
invariant probability density for the n-way Bernoulli shift maps
[3, 4]. Watermark signals (Bernoulli chaotic watermarks), gener-
ated in this way, are wide-sense stationary. To attain zero mean,
the following modification is done:

B, : [-0.5,0.5] = [<0.5,0.5]
Wiy1 = Bp(Wi) =n(W; + 1)(mod 1) — 1 (8)
Sample W, 4, is derived from sample W; through [4]:
Witk =n"(W; +0.5)(mod 1) —0.5 k> 0 ©)

Thus, the output of an n-way Bernoulli shift map after k iterations
(denoted by B¥) isequal to that of an”-way Bernoulli shift map:

Wisr = BE(Wi) = B« (Wi) k>0 (10)

If the starting point W, of the map isan irrational number, the
generated sequence exhibits a chaotic, non-periodic behaviour [5].
Thus, if one considers two Bernoulli chaotic watermarks W, W'
generated by the iterative application of the same map B,, on two
distinct, irrational starting points (watermark keys) Wi, W1, both
belonging to the same chaotic orbit, there will always be an integer
k > 0 such that:

Wi =BEwW,) OR W, =BFW) (11)

Consequently, their samples W/, W; will aso be associated by
(Vi,i € [1,N]):

W] = Wi, = BE(W:) OR Wi =W/, = BEW/)) (12

These corollaries are used for the derivation of joint moments of
Bernoulli chaotic watermarks. Bernoulli maps are characterized
by uniform invariant density. Based on this, the m-order moments
for W; are calculated:
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The derivation of the joint moments of W, W' appearing in
(4), (5), for Bernoulli chaotic watermarks is reported in [6]. One
of the joint moments is the autocorrelation function Ry w (k):

1
12nk

By observing (14), one concludes that W; and W, ;.. are correlated
for small values of k and n. Convergence, though, occurs quickly
as k increases, even for small n. Asn increases, the autocorrela-
tion function of the Bernoulli chaotic watermarks approximates a
Dirac delta function, i.e., the autocorrelation function, idealy, of
random watermarks. Thus, n controls the correlation properties of
Bernoulli chaotic watermarks. Based on that, it is easily derived
that, for small values of n, Bernoulli chaotic watermarks are char-
acterized by lowpass spectrums, while, as n increases, the latter
tend to be white, thus converging towards the spectrum of random
watermarks. In short, it is concluded that n controls the correla
tion/spectral properties of Bernoulli chaotic watermarks. By ap-
propriately choosing n, Bernoulli chaotic watermarks can attain
the best possible performance for the application at hand.

Substituting the evaluated expressionsin (4) and (5), analytica
expressions for p. and o2 are derived for awatermarking system
based on Bernoulli chaotic watermarks:

Rww (k) = E[W;W;1x] = k>0 (24)

p

He = Tonk 15
Due to its extensive length, the expression of ¢ is ommitted. The
reader may consult [6]. These expressions can be used to obtain
pe and o for events Hy (W = W') by setting & = 0, Hy,
(W # W) by setting k # 0 and Hy, by settingp = 0. o2 for
event H, provesto be greater than that for event Hi,. p. islarger
for small k& > 0 but converges to that for Hi,, as k increases.
Thus, event Hy, is the worst case in terms of bigger probability
errorsthan Hy, or H;.

Although Bernoulli chaotic watermarks prove to be correlated
for small £k > 0, the Centra Limit Theorem for random vari-
ables with small dependency [7] may be used in order to estab-
lish that ¢ attains a Gaussian distribution, even for event Hy;, (as-
suming that IV is sufficiently large). Furthermore, under the worst



case assumption, both p. and o2 converge to a constant value for
large k. For such k, Rww (k) = 0 meaning that E[W;W;] =
E[W;]E[W;] = 0. Thus, the terms of the sum in ¢ can be consid-
ered sufficiently independent and the distribution of ¢ under event
Hjyy for k — oo can be assumed normal. In such acase, Py, m,,
can be estimated using the limit values of y. and 62 ask — oo.
Thisis done since convergence is actually quickly reached leading
to a very small probability (for large V) of actually facing a case
where k israther small. Py, values are estimated using the values
of pe and o2 for k = 0 and ROC curves are evaluated from (3).

4. PSEUDORANDOM WATERMARKS

Zero-mean pseudorandom sequencesin [—0.5, 0.5] areconsidered.
Such sequences attain a white spectrum. Furthermore, for such
watermarks, the terms of the sum in ¢ can be safely assumed to be
sufficiently independent. Thus, due to the Central Limit Theorem,
¢ attains a Gaussian distribution for a sufficiently large N. Based
on their properties, the moments of (4), (5), are easily obtained:

0 m odd
E[Wr] = 16
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Similar expressions can be derived for the momentsinvolving more
than two random variables. Using these, p1. and o2 for a water-
marking system based on random watermarks can be calcul ated:

-
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It is seen that ¢ attains the same mean value for both events W #
W' and p = 0, while its variance for the first event is larger than
that for the second, proving that the first event is the worst case.

5. NOISE ADDITION

S’ = S + pW is assumed to be corrupted by additive random
whitei.i.d. noise e uniformly distributed in the interval [—e,, €,].
¢ has zero mean value, p. = 0, and variance equal to o = €2/3.
‘W may be either a chaotic watermark or arandom one. Detection
involves estimation of the correlation between the noise corrupted
signdl ' + € and a watermark W', ie: cc = = 3% (S) +
€;)W;. e does not modify the correlator's Gaussian distribution
since it is independent of the other signals. In order to determine
theinfluence of noise addition on the system'’s detection reliability,
the mean value .. and variance o, of c. must be estimated:

pee = 3 O [EISIEV!] + Ele)EV!] + pEW: W]

(20)
For Bernoulli chaotic watermarks, (20) leads to pe, = 5. For
random watermarks, we obtain:
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Its variance o2, is given by:
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where o2 denotes the correlator variance under no distortions. Itis
seen that noise corruption is not a serious threat, since it does not
affect the mean value of the correlation and only dightly influences
its variance, provided that its power is much less than that of the
original signal. Furthermore, noise corruption affects the system
performance similarly for either random or chaotic watermarks.

6. LINEAR LOWPASSFILTERING

We consider a moving average filter of length 2F + 1 with the
impulse response h; = gz, @ € [—F, F]. Thefiltered signal
S’y is obtained by the linear convolution: S}, = S; * h; =
S _phiSi_;, i € [1,N]. The correlator detector estimates
now the correlation c; between S’ and a watermark W': ¢y =
LN S ah(Si—i + pW;_)W] Filtering does not also
modify the correlator Gaussian distribution. ., and ol ; arenow
evaluated by:

F N

1
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For the case of Bernoulli chaotic watermarks, (23) becomes:
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When random watermarks are used, (23) leads to:
=, IfW=W'
— 12(2F+1)
Hey { 0, ifp=00rW #W 29

Estimation of 2 ; isperformed as follows:

02 =SE RBP4+ = oY B
[Efvil (E[Sl_msl_n]E[Wla] + p2E[Wl—sz—nWl,2])+
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In (26), E[c’] = o2 + p2 denotes the 2nd moment of ¢ under no
distortions for any kind of watermarks. For the case of Bernoulli
chaotic watermarks, o ; has been numerically estimated for pre-
defined values of IV, n and F'. Such numerical estimation is prone
to errors dependent on the computational accuracy. For random
watermarks, (26) leads to an expression outlined in [6], due to pa-
per length constraints.



7. EXPERIMENTAL RESULTS

In order to empirically verify the watermarking system perfor-
mance in terms of ROC curves, the system is fed with two input
signals: amusic audio signal and a random uniformly-distributed
signal, appropriately prefiltered to comply with model (6). Slightly
better performance is obtained in the case of perfect validity of (6),
i.e. random signal. The system performance is measured for both
Bernoulli and random watermarks to enable their comparison. The
value of p is set such that the watermarked signal has SNR=30dB.
10000 keys are used in the experiments. ROC curve estimation is
performed under the worst case assumption, (event Hy).

The achieved ROC curves under no attack, for varying n and
the audio signal asinput, are shown in Figure 1a. The coincidence
of the theoretical and empirical ones is noted. Respective curves
are illustrated for random watermarks. It is seen that the latter
attain the best performance with respect to the overall error proba-
bility. However, as n increases, the performance of Bernoulli wa-
termarksis quickly converging to that of random ones, since their
lowpass spectral propertiestend to whitewithincreasing n. InFig-

@ (b)

Fig. 1. Theoretical and empirical ROCs for Bernoulli chaotic and
random watermarks after (a) no attack, (b) noise addition.

ure 1b, respective results are shown after noise addition. Similar
conclusions are drawn. Noise of small power does not greatly af-
fect the system performance: Py, and Py, values are only slightly
increased.

The system performance is also evaluated after lowpass filter-
ing. Figure 2a shows both the theoretically and experimentally
derived ROC curves after moving average filtering (length 3) of
the watermarked audio signal for Bernoulli and random water-
marks. Both types of results tend to be similar. The numerical
estimation of the theoretical o2, for Bernoulli watermarks has its
impact on the ROC curves. Use of the latter leads to better per-
formance, especialy for small values of n, compared to random
watermarks. Thisiseasily justified by their lowpass spectral prop-
erties for small n, which renders them robust against lowpass dis-
tortions. In order to establish this, lowpass filtering of random wa-
termarks prior to embedding was done, so that they attain similar
spectral/correlation properties with Bernoulli watermarks for vari-
ous n. Figure 2b shows the experimentally estimated ROC curves
for LP random watermarks and for varying n, after moving aver-
age filtering of length 3 and for the random signal as input, com-
pared against the ones obtained when using respective Bernoulli
watermarks. They are nearly identical proving that the watermark
spectrum plays a significant role in watermarking applications.

@ (b)

Fig. 2. (@) Theoretica and empirical ROC curves for Bernoulli
chaotic and random watermarks after lowpass filtering, and (b)
empirical ROC curves for Bernoulli chaotic (solid lines) and ran-
dom watermarks (dashed lines), prefiltered to attain similar spec-
tral/correlation properties with the chaotic ones.

8. CONCLUSIONS

The n-way Bernoulli shift generated chaotic watermarks are in-
troduced and their statistical properties relevant to awatermarking
application are investigated to determine the overall system perfor-
mance under no distortions or simple attacks. Similar investiga-
tion is performed for pseudorandom watermarks, for comparison
purposes. Bernoulli chaotic watermarks attain controllable spec-
tral/correlation properties dependent on the value of n. They can
be easily constructed with the appropriate spectral properties ac-
cording to the prospective application or potential distortion, while
preserving their invariant probability density. Random watermarks
should be preprocessed to exhibit similar efficiency. Such prepro-
cessing modifiestheir initial probability distribution which enables
the risk of possible perceptibility.
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