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ABSTRACT

This paper proposes a closed-loop optimization framework
to improve image coding efficiency by searching DCT coef-
ficients at the equivalent subjective quality to original cod-
ing result. The proposed framework shares a basic idea cur-
rently adopted in speech coding that searches optimal codes
in closed-loop operation, evaluating the coded signal with
perceptually weighted mean square error. To evaluate the
perceptual quality in image coding, we introduce Masked
PSNR that accounts masking effects, by which we apply
the stepwise removal of subjectively negligible DCT coeffi-
cients. The result justifies the effectiveness of the proposed
framework.

1. INTRODUCTION

For the recent two decades, moving image coding has been
developed and optimized based on motion compensated hy-
brid DCT(MC-DCT) coding[1], where characteristics of hu-
man perception has been highly utilized for effective lossy
coding in several ways such as exchange of spatial and am-
plitude resolutions by DCT, unequal quantization by a weight-
ing matrix, high-luminance-low-chroma sampling resolu-
tion, and so on[2, 3]. Those are based on human perception
models. From the viewpoint of speech coding, however, us-
age of perception model in image coding is different from
speech coding. Speech coding with VSELP(Vector Sum
Excited Linear Prediction) or CELP(Code Excited Linear
Prediction), which searches optimal codes in closed-loop
operation, evaluating the coded signal with perceptually weighted
mean square error[4] , explicitly use the human perception
model. The basic idea proposed in this paper is inspired by
such a speech coding framework. In this context, an image
coding that has a closed optimization loop can be viewed as
in Fig. 1.

Here we have the following two issues when discussing
image coder that has a closed loop to optimize subjective
image quality.

subjective image quality measure : Subjective image qual-
ity is difficult to measure and quantify in general even

Fig. 1. Image encoder with a feedback loop.

if not impossible, since the quality is influenced by
personal experience and other high-level factors out-
side of any simple physical description of the image.
Nevertheless, we can use a more subjective measure
rather than the mean square error metric (MSE) when
seeing the success in speech coding. In that sense, as
reported in many contributions[5, 6, 7, 8, 9] , there
could be many candidates to the distortion evaluator
depicted in Fig. 1. What should be the choice?

optimized coding parameters : In the speech coding men-
tioned above, the optimal vector/code is to be selected
in a vector quantization process after fixing linear pre-
diction parameters. In MC-DCT image coding, on
the other hand, coding parameters are motion vec-
tors, mode selections, quantization steps. Here is a
general question; can those parameters be optimized
or is there any room to optimize?

In this paper, we use a weighted PSNR (”Masked PSNR”[10]
introduced in the next section) for its availability. Please
note that the optimality of that metric is beyond the scope
of this paper. Preferably we will focus on the optimization
framework introduced into image coding area, and point out
its possibility to improve coding efficiency in light of the
subjective quality. The scope of this paper is described as
follows

• The image encoder assumed here is DCT-based. Not
specifically, MPEG-4 intra coding [3] will be opti-



Fig. 2. Relationship between images and coded data.

mized for experiments. Optimization including inter
frame coding is of further study.

• Only DCT coefficients are operated while the other
parameters are left intact.

Fig. 2 depicts our formulation, where

H1 : image space (N-dimensional vector space).

H2 : coded data space (M-dimensional vector space). For sim-
plification in this paper, suppose coded data g ∈ H2 is
identical to quantized DCT coefficients, thus N = M since
DCT is a linear orthogonal operator.

coding operator A : H1 → H2

decoding operator B : H2 → H1

fs ∈ H1 : original image.

gs ∈ H2 : quantized DCT coefficients coded from fs.

f∗ : decoded image from gs. f∗ �= fs due to the quantization
process in A.

optimization operator M : H2 → H2

g′ : optimized from gs

f ′ : decoded image with optimization.

d() : a distortion measure in H1.

L(g) : a generic code length function(i.e., a rate function) that
gives amount of g.

Given an appropriate distortion measure d, in our pro-
posed framework, we try to seek a better DCT coefficients
g′ than the original gs, which minimizes

F (g′; fs) = d(f ′ − fs) − d(f∗ − fs) + λ(L(g′) − L(gs)),
(1)

where λ denotes the ratio of distortion:code length. The for-
mula ”distortion + λ rate” is is well known in rate-distortion

optimization problems, to which for example Ramchandran
tried to optimize quantization parameters[11]. The differ-
ence is obvious, where we try directly to modify DCT coef-
ficients to better one that maintains subjective image qual-
ity similar to the original image fs without changing the
quantization-step parameters. Suppose the distortion mea-
sure d() is MSE, it always follows that any change by M
from the original code causes additional MSE, since MSE
itself is a Euclid distance in H1, the operators A and B are
unitary transforms. It seems less possible to improve as far
as we adhere to MSE. Instead we try to use an appropriate
subjective quality measure for d().

The original contribution of this paper consists of
(1) a new framework that has a feedback loop to optimize
the DCT coefficients and to attain an original image quality,
and
(2) experimental justification of the proposed framework.
As far as we know, similar challenge in the image coding
field has not been reported.

2. SUBJECTIVE QUALITY MEASURE: MPSNR

Although our proposed Masked PSNR is one of candidates,
it is worth to describe how d() works in our proposed frame-
work. It is known that the presence of a background stimu-
lus modifies the perception of a foreground stimulus: mask-
ing corresponds to a modification of the detection thresh-
old of the foreground according to the local contrast of the
background. Thus original image pattern can mask the dis-
tortion to some extent. We utilize the masking effect and
realize it as a multichannel metrics where the original im-
age and distortion are filtered independently by a collection
of filters. Each filter is pooled to provide a separate chan-
nel. The channels are then weighted and pooled together



with a different function. A collection of independent chan-
nels spans the frequency plane, partitioning the plane into
frequency- and orientation selective bands. For implemen-
tation, we use a bank of four Gabor filters[12] tuned to two
spatial frequencies (0 and 1/4 sampling frequency) and four
orientations[10].

The use of Gabor filters is advantageous in terms of
their phase invariance to edge position, because a Gabor fil-
ter is of quadrature mirror filters (consisting of a Hilbert’s
pair). A Gabor filter outputs localized directional spatial
frequency. Fig. 3 shows three filters of our implementation.

(a) Zone plate as input. (b) Gabor response of 0 deg.

(c) Gabor response of 45 deg. (d) Gabor response of 90 deg.

Fig. 3. Zone plate and its responses from Gabor filters.

By applying Gabor filters, we decompose the original
input image as

fs → {m0,m45,m90,m135}, where (2)

m0,m45,m90,m135 are band-passed response images with
four orientations.

Letting (f − fs) be D(f ; fs), we also apply five Gabor
filters to errors as

D(f ; fs) → {DDC,D0,D45,D90,D135}, where (3)

DDC,D0,D45,D90,D135 are component error images (i.e.,
zero frequency tuned and the previous fours) to the original
image and satisfy

D(f ; fs) = DDC + D0 + D45 + D90 + D135. (4)

In a uniform gray field, we do not need to model visual
masking for DDC . For the others, masking occurs when a

high contrast pattern is on or near the stimulus. Here we
assume that each of m0,m45,m90,m135 is ”maskers” to
the distortion that has same localized directional spatial fre-
quency. Thus each of D0,D45,D90,D135 should be at-
tenuated by the ratio of m0,m45,m90,m135 . While let-
ting us set aside the detail[10], we calculate the suppression
weight image as {m̄0, m̄45, m̄90, ¯m135} as the inverse ra-
tios.

Masked D(f ; fs) = DDC + m̄0 ⊗ D0 + m̄45 ⊗ D45

+m̄90 ⊗ D90 + ¯m135 ⊗ D135, where
(5)

⊗ is a pixel-by-pixel attenuation operation for each image.
Letting

d(f − fs) = |Masked D(f ; fs)|2, (6)

we can define Masked PSNR as

Masked PSNR = 10log10
2552

d(f − fs)/N
. (7)

3. OPTIMIZATION PROCESS AND EXPERIMENT

Now let us discuss the optimization operator M. Similar
to vector quantization in the speech coding, improvement
of the rate-distortion characteristics could be achieved by
searching coefficients that significantly minimizes F (g′; fs)
in Eq. 1. One of simple operations for the rate-distortion
optimization in DCT-based coding is to carefully remove a
higher DCT coefficient which is unnecessary to maintaining
the image quality, in a step-by-step manner (i.e., hill climb
manner). It is a heuristic algorithm, assuming that higher
frequency coefficients considered to have low impacts for
image quality. The optimization process can be summarized
as follows. λ in Eq. 1 is obtained beforehand through the
experiments. λ corresponds to the slope of MPSNR curve
as shown in Fig. 5. For a decoded image f , d(f − fs) in Eq.
6 is first calculated. Then quantized DCT coefficients are
processed in the closed loop for every 8x8 pixel DCT block.
In that process, one of DCT coefficients are tentatively re-
moved, and its effect on the number of bits and d(f − fs)
of the reconstructed image are evaluated. If such operation
improves the rate-distortion criterion in Eq. 1, the removal
is adopted. This optimization process is repeated as long as
such profitable removal is possible. The above reduction of
the bits that represents subjectively less important image is
performed to all of the 8x8 DCT blocks of the image repeat-
edly.

The removal of the DCT coefficients must introduces
the additional disturbance to the original image quality. Fig.
4 shows the additional distortion introduced by the opti-
mization process. Please note that the additional distortion



is not noticeable because the distortion has same localized
directional spatial frequency to the background stimulus,
i.e. the maskers. In this experiment, for example we at-
tained approximately 7% improvement of the bit rate from
the original one at the same MPSNR; 18520 bit at 36.96dB
was reduced to 17208 bit at 36.97dB. Fig. 5 shows the rate-
distortion improvement.

(a) Original result(QP=10) (B) Optimized result(QP=10)

(C) Added distortion to original result (magnified 5times)

Fig. 4. Original result, and its optimized one, and their dif-
ference.

4. CONCLUSION

To conclude this paper, let us question ourselves ”Is our cod-
ing result of DCT coefficients optimal?, especially in light
of subjective quality?”. This paper tried to point out that the
further optimization is plausible with the closed-loop opti-
mization framework. On the other hand, many issues are
left intact. One is an optimization process. A hill-climb
method is inevitable in our formulation, since Eq. 1 can not
be differentiated with respect to DCT coefficients. Further
study is needed. Alternatives to MPSNR, obviously, should
be developed and MPSNR itself is not sufficient to model
the human perception. In this paper, we just started a closed-
loop optimization in image coding. By incorporating more
sophisticated spatio-temporal masking effects with a more
effective optimization process, encoding techniques such as

Fig. 5. Rate-distortion curve in MPSNR.

pre-processing and quantization schedule can be treated in
the same framework.

5. REFERENCES

[1] H. Li, A. Lundmark, and R. Forchheiner, “Image sequence coding at
very low bitrates:a review,” IEEE Trans. on Image Processing, vol.
3, no. 5, pp. 589–609, Sept. 1994.

[2] D. Le Gall, “MPEG:a video compression standard for multimedia
applications,” Commun. ACM, vol. 34, no. 4, pp. 46–58, 1991.

[3] MPEG-4 visual, “Final draft international standard 14496-2,”
ISO/IEC JTC1/SC29/WG11 N2502, Oct. 1998.

[4] B. Atal and M Schroeder, “Predictive coding of speech signals and
subjective error criteria,” IEEE Trans. Acoust. Speech Signal Pro-
cessing, vol. ASSP-27, pp. 247–254, 1979.

[5] S. Daly, “The visible differences predictor: An algorithm for the
assessment of image fidelity,” in Proc. SPIE, 1992, vol. 1616.

[6] P. Teo and D. Heeger, “Perceptual image distortion,” in Proc. ICIP,
Nov. 1994, number lS-16.

[7] S Hangai, K. Suzuki, and K. Miyauchi, “Advanced wsnr for coded
monochrome picture evaluation using fractal dimension,” in PCS’94,
1994, pp. 92–95.

[8] J. Farrell, X. Zhang, C. van den Branden Lambrecht, and D. Sil-
verstein, “Image quality metrics based on single and multi-channel
models of visual processing,” in IEEE Proc. COMPCON ’97.

[9] A. Rohaly, P. Corriveau, L. John, A. Webster, V. Baroncini,
J. Beerends, J. Blin, L. Contin, T. Hamada, D. Harrison, A. Hekstra,
J. Lubin, Y. Nishida, R. Nishihara, J. Pearson, A. Pessoa, N. Pick-
ford, A. Schertz, M. Visca, A. Watson, and S. Winkler, “Video qual-
ity experts group:current results and future directions,” in Proc.SPIE
Visual Communications and Image Processing, 2000, vol. 4067.

[10] M. Takahashi, “Quality improvement of wartermarked digital images
by masking effect on visual disturbances,” M.S. thesis, Nara Institute
of Science and Technology, 2000, in Japanese.

[11] K. Ramchandran, A. Ortega, and M. Vetterli, “Bit allocation for de-
pendent quantization with applications to multiresolution and mpeg
video coders,” IEEE Trans. Image Processing, vol. 3, no. 5, pp. 533–
545, Sept. 1994.

[12] D. Gabor, “Theory of communication,” J. Institute of Elec. Engr.,
1947.


