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ABSTRACT

This paper presents a simple and e�cient time domain
technique to estimate an all-pole model on the mel-
frequency scale (Mel-LPC), and compares the recogni-
tion performance of Mel-LPC cepstrum with those of
both the standard LPC mel-cepstrum and the MFCC
through the Japanese dictation system (Julius) with
20,000 word vocabulary. First, the optimal value of fre-
quency warping factor is examined in terms of mono-
syllable accuracy. When using the optimal warping
factors, Mel-LPC cepstrum attains the word accura-
cies of 93.0% for male speakers and 93.1% for female
speakers, which are 2.1% and 1.7 % higher than those
of the LPC mel-cepstrum, respectively. Furthermore,
this performance is slightly superior to that of MFCC.

1. INTRODUCTION

In automatic speech recognition (ASR), it is important
to parameterlize the perceptually relevant aspects of
short-term speech spectra. Among the psychoacoustic
aspects, the auditory-like frequency scale has been in-
corporated into a number of spectral analysis methods.

In nonmetric spectral analysis, mel-frequency cep-
stral coe�cients (MFCC) [1] are one of the most pop-
ular spectral features in ASR. In parametric spectral
analysis, the LPC mel-cepstrum based on an all-pole
model is widely used because of its computational sim-
plicity and e�ciency. However, while the LPC mel-
cepstrum takes into account of auditory like frequency
contribution, its frequency resolution is not improved
by such a frequency warping of the LPC spectrum.

To alleviate this inconsistency between the LPC
and the auditory analyses, several studies have sim-
ulated the auditory spectra before the all-pole model-
ing [3] [2] [4]. The perceptual linear predictive (PLP)
analysis is a well-known method [3]. In contrast to
these spectral modi�cation, Strube [5] proposed an all-
pole modeling to a frequency warped signal converted

by the bilinear transformation [8], and presented sev-
eral computational procedures to approximate the es-
timate. However, these methods have been rarely used
in ASR due to relatively high computational costs com-
pared to the conventional LPC analysis.

Therefore, we have previously proposed a simple
and e�cient time-domain technique to estimate the
warped all-pole model, which is referred to as a "Mel-
LPC" analysis, and showed the e�ectiveness through
phoneme recognition tests [6]. This paper further com-
pares the recognition performance of Mel-LPC cepstrum
with those of conventional cepstral parameters: the
LPC mel-cepstral, and the mel-frequency cepstral coef-
�cients (MFCCs) through the Japanese dictation sys-
tem (Julius) with 20,000 word vocabulary [7].

The remainder of this paper is organized as follows;
Section 2 describes the Mel-LPC analysis. Section 3
demonstrates the superiority of Mel-LPC cepstrum in
recognition performance over conventional analyses. Fi-
nally, Section 4 summarizes the results.

2. MEL-LPC ANALYSIS

2.1. LPC Analysis on Mel-frequency Scale

The linear prediction method on a warped frequency
scale [5] is based on the standard "autocorrelation"
method applied to to the bilinear transformed speech
signal. Let x[0]; ::; x[N � 1] be a �nite speech segment.
The frequency warped signal f~x[n]g is de�ned by

X(z) =

N�1X
n=0

x[n]z�n = ~X(~z) =

1X
n=0

~x[n]~z�n (1)

where ~z�1(z) is the �rst order all-pass �lter,

~z�1(z) =
z�1 � �

1� � � z�1 : (2)

In the frequency domain, the spectrum X(ej�) on the
linear frequency axis � is converted to the frequency-

warped spectrum ~X(ej
~�) on the warped-frequency axis

~� by the frequency mapping function,
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Fig. 1. The frequency mapping function in the bilinear
transformation.

~� = �+ 2 � tan�1
�

� sin�

1� � cos�

�
: (3)

Figure 1 shows the approximated frequency mapping
functions of the bark and the mel scales (the solid lines)
at the sampling frequency of 16kHz together with the
"Mel" and the "Bark" scales (the dotted lines) based
on the psychoacoustic works [9].

The prediction error minimization in the ~z domain
is equivalent to minimize the output energy ~E of the
inverse �lter, ~A(~z(z)) = 1 +

Pp

n=1 ~an~z
�n(z), in the z

domain as shown in Figure 2. In this �gure, W (z) is
de�ned by

W (z) =

p
1� �2

1� � � z�1 ; (4)

and
��W (ej�)

��2 is equal to d~�=d�. However, since ei-
ther the frequency-warped signal ~x[n] or the pre�ltered
signal fxw[n]g is an in�nite sequence, the LPC analysis
on the mel-frequency scale needs an approximation by
truncating ~x[n] or xw[n].

2.2. Mel-LPC Analysis

Unlike the Strube's formulation, the Mel-LPC analysis
[6] removes W (z) in Figure 2. That is, this method
directly minimizes the output energy of a mel-inverse
�lter ~Aw(~z(z)) in the z domain without pre-�ltering
x[n] as shown in Figure 3.

x[n] - W (z) -
xw[n]

~A(~z(z))
~e[n]
-

1X
n=0

(�)2 - ~E

Fig. 2. Warped LPC analysis in the z domain.

x[n] - ~Aw(~z(z))
ew[n]

-
1X
n=0

(�)2 - ~Ew

Fig. 3. Mel-LPC analysis in the z domain.

This modi�cation is equivalent to replacing x[n] in
Figure 2 by the signal whose z-transform isX [z]W�1[z].
Therefore, the estimated inverse �lter ~Aw(~z) is no longer
the same as ~A(~z), but instead includes the e�ect of
W�1(z). Then, we write this estimated spectrum as

~Hw(z) =
~�w

1 +
Pp

n=1 ~aw;n~z(z)
�n

: (5)

Given a �nite speech segment, x[0]; ::; x[N � 1], the
mel-prediction coe�cients f~aw;ig are estimated by min-
imizing the prediction error energy over an in�nite time
interval,

~Ew =

1X
n=0

 
pX
i=0

~aw;iyi[n]

!2

: (6)

As a result, f~aw;ig and ~�w are given by the Durbine's
algorithm using the following \generalized" autocorre-
lation function in which a unit delay is replaced by the
all-pass �lter,

~r�[m] =

N�1X
n=0

x[n]ym[n]; (7)

where ym[n] is the output signal of ~z
�m(z) excited by

x[n]. In terms of Parceval's theorem ~r�[m] in equation
(7) can be written in the mel-frequency domain ~� as

~r�[m] =
1

2�

Z �

��

�� ~X(ej
~�) ~W (ej

~�)
��2� cosm~� d~�; (8)

where ~W (~z) = W�1(z) =
p
1� �2=(1 + � ~z�1). Con-

sequently, j ~Hw(e
j~�)j2 provides the spectral envelope of

j ~X(ej
~�) ~W (ej

~�)j2 . The frequency-weighting function
~W (ej

~�) can be removed by �ltering ~r�[m] with the FIR
�lter [ ~W (~z) ~W (~z�1)]�1.

x[n] -

~z(z)�m-

6ym[n]

Cross:
Corr:

- ~r�[m]

Fig. 4. The generalized autocorrelation function.



However, since this term works as a �rst order pre-
emphasis �(1�� �z�1) in the z domain, we use cepstral
coe�cients (Mel-LPC cepstral coe�cients) derived from
f~aw;kg in the following experiments.
The computational cost for the Mel-LPC analysis
is two times greater than that for the standard LPC
analysis due to computation of ym[n] in equation (7).
However, this computational load is much lower than
Strube's method [5], and the prediction coe�cients are
estimated without any approximation.

3. EVALUATION

3.1. Experimental Conditions

The recognition performance of the Mel-LPC cepstrum
was compared with those of conventional cepstral pa-
rameter: the LPC mel-cepstral, and the mel-frequency
cepstral coe�cients (MFCCs).

The speech data was sampled at 16kHz. A speech
segment of 25ms with a frame shift of 10ms was preem-
phasized with (1�0:90~z�1), and was weighted by Ham-
ming window. In both the LPC and the Mel-LPC anal-
ysis the number of poles was set to 16, and the number
of channels in MFCC analysis was set to 24. Every fea-
ture vector consists of 12 cepstral and 13 delta-cepstral
coe�cients including the 0th delta-cepstral coe�cient.
As an example, Figure 5 compares a LPC spectrum
(the dotted line) and a Mel-LPC spectrum (the bold
line) for � = 0:6 together with the FFT spectrum. It is
seen that the Mel-LPC spectrum represents a more pre-
cise spectral envelope below 2kHz than the LPC spec-
trum with the same number of poles (p = 16), and
especially separates the two adjacent formants around
500Hz.

In the recognition experiments, the IPA Japanese
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Fig. 5. Comparison of the Mel-LPC (bold) and the
LPC (dotted) spectra.

dictation systems with 20k word vocabulary [7] were
used. The sub-word models are 124 gender-dependent
monosyllable HMMs. The structure of HMMs is a left-
to-right model with 3 emitting states for vowels, double
consonant(/q/), syllabic nasal(/N/) and silences, and
with 5 emitting states for other syllables. A state con-
sists of 16 Gaussians.

In training HMMs, we used about 20k sentences ut-
tered by 134 speakers for each gender, which are from
database of phonetically balanced sentences (ASJ-PB)
and newspaper article texts (ASJ-JNAS). The test set
consists of 100 sentences uttered by 23 speakers for each
gender. The results are evaluated in terms of percent-
age accuracy (Acc[%] = N�S�D�I

N
� 100),where for N

tokens, S, D, and I are substitution, deletion, and in-
sertion errors, respectively.

3.2. E�ect of Frequency Warping Factor

First, the optimal frequency warping factors in both the
Mel-LPC cepstrum and the LPC mel-cepstrum were
examined in terms of the syllable accuracy obtained
without both the bigram and the trigram language
models. Figure 6 compares the syllable accuracy as
a function of the frequency warping factor � for both
the LPC mel-cepstrum and the Mel-LPC cepstrum to-
gether with that for the MFCC.
In the Mel-LPC analysis, the optimal value of � for
male speakers is around 0.5, which is between the mel
and bark scales, whereas that for female speakers is
0.4, which is smaller than that corresponding to the
mel-scale. This di�erence between both gender is also
observed in the case of the LPC mel-cepstrum. This
di�erence seems to be caused by the sparse harmonics
in female voices. On the other hand, the optimal values
for the LPC mel-cepstrum are much smaller than those
corresponding to the bark and mel-frequency scales.
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Fig. 6. Syllable accuracy without language models as
a function of frequency warping factor �



As a result, it is clear that both Mel-LPC cepstrum
and the LPC mel-cepstrum outperform the LPC cep-
strum, that is, for � = 0, due to auditory-like fre-
quency contribution. Furthermore, the Mel-LPC cep-
strum with the optimal frequency warping improves
recognition accuracy over the LPC mel-cepstrum and
the MFCC. The same tendency is also found for female
speakers, but the improvement is small. This improve-
ment is caused by higher frequency resolution in the
Mel-LPC analysis.

3.3. Evaluation by Dictation

Since the optimal weights on both the language score
and the insertion penalty depend on the kinds of fea-
ture parameters, the values of both weights were opti-
mized. The optimal values for the �rst and the second
pathes in the decoder are shown in Table 1. The opti-
mal values for the Mel-LPC cepstrum tend to be larger
than the LPC mel-cepstrum and the MFCC.
As a results, the Mel-LPC cepstrum improved the word
accuracy from 90.9% for the LPC mel-cepstrum to 93.0%
for male speakers and from 91.4% to 93.1% for female
speakers as shown in Figure 7. Furthermore, Mel-LPC
cepstrum attained slightly higher recognition accuracy
than the MFCC. This improvement is caused by the
reduction of substitution and deletion errors as shown
in Table 2.

Table 1. The optimal values of the language weight
and the insertion penalty in three kinds of parameters.

1st Pass 2nd Pass
WL PI WL PI

MLPC 8.6 2.0 8.8 1.5
LPCM 7.2 1.0 7.0 1.0
MFCC 6.5 -0.8 7.0 -0.8

90 91 92 93 94
Word Accuracy [%]

Female
MFCC

MLPC

LPCM

Male
MFCC

MLPC

LPCM

Fig. 7. Word accuracy for the Mel-LPC(MLPC) cep-
strum, the LPC mel-cepstrum and the MFCC.

Table 2. Three types of recognition errors for MLPC,
LPCM, and MFCC.

male female
Sub Del Ins Sub Del Ins

MLPC 5.0 0.9 1.0 5.2 0.5 1.2
MFCC 5.6 1.2 1.2 5.2 0.8 1.1
LPCM 6.6 1.1 1.4 6.3 0.8 1.6

4. CONCLUSIONS

This paper has presented a simple and e�cient time do-
main method in all-pole modeling on the mel-frequency
scale, and has evaluated the performance through large
vocabulary continuous speech recognition. The Mel-
LPC cepstrum has achieved a signi�cant improvement
in recognition accuracy over the LPC mel-cepstrum,
and has attained slightly higher recognition accuracy
than the MFCC.
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