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ABSTRACT

A new algorithm is proposed for demodulating discrete-time
AM-FM signals, which first interpolates the signals with smooth
splines and then uses the continuous-time energy separation al-
gorithm (ESA) based on the Teager-Kaiser energy operator. This
spline-based ESA retains the excellent time resolution of the ESAs
based on discrete energy operators but performs better in the pres-
ence of noise. Further, its dependence on smooth splines allows
some optimal trade-off between data fitting versus smoothing.

1. INTRODUCTION

Demodulating AM-FM signals, i.e., nonstationary sines

x(t) = a(t) cos(
∫ t

0

ω(τ)dτ) (1)

that have a combined amplitude modulation (AM) and frequency
modulation (FM), has been a significant research problem with
many applications in communications systems, speech processing,
and general nonstationary signal analysis. To solve it, a new ap-
proach was developed in the 1990's based on nonlinear differential
operators that can track the instantaneous energy or its derivatives
of a source producing an oscillation [2, 4]. The main such rep-
resentative is the continuous-time Teager-Kaiser energy operator
Ψ[x(t)] ≡ [ẋ(t)]2 − x(t)ẍ(t), where ẋ(t) = dx(t)/dt. Applied
to the AM-FM signal (1), Ψ yields the instantaneous source en-
ergy, i.e. Ψ[x(t)] ≈ a2(t)ω2(t), where the approximation error
becomes negligible [3] if the instantaneous amplitude a(t) and in-
stantaneous frequency ω(t) do not vary too fast or too much with
respect to the average value of ω(t). Thus, AM-FM demodulation
can be achieved by separating the instantaneous energy into its am-
plitude and frequency components. Ψ is the main ingredient of the
first energy separation algorithm (ESA)√

Ψ[x(t)]
Ψ[ẋ(t)]

≈ ω(t) ,
Ψ[x(t)]√
Ψ[ẋ(t)]

≈ |a(t)| (2)

developed by Maragos et al. [3] and used for signal and speech
AM–FM demodulation.
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The instantaneous energy separation methodology has led to
several classes of algorithms for demodulating discrete-time AM-
FM signals

x[n] = x(nT ) = A[n] cos(
∫ n

0

Ω[k]dk) (3)

where A[n] = a(nT ) and Ω[n] = Tω(nT ). A direct approach is
to apply the discrete-time Teager-Kaiser operator Ψd[xn] ≡ x2

n −
xn−1xn+1, where xn = x[n], to the discrete AM-FM signal (3)
and derive discrete energy equations of the form

Ψd[xn] ≈ A2[n] sin2(Ω[n]) (4)

This yields the following algorithm, called Discrete ESA [3]:

arccos

(
1− Ψd[xn−xn−1]+Ψd[xn+1−xn]

4Ψd[xn]

)
≈ Ω[n] (5)√

Ψd[xn]

sin2(Ω[n])
≈ |A[n]| (6)

Another approach involves estimating the instantaneous frequency
by modeling the discrete-time signal xn via the exact Prony, as
shown in [1, 5]. This yields algorithms that also contain the discrete
energy operator as their main ingredient. The best such algorithm
is [1]

arccos

(
Υ3[xn] + Υ3[xn−1]

4Ψd[xn]

)
≈ Ω[n] (7)

whereΥ3[xn] ≡ xnxn+1−xn−1xn+2 is a third-order energy oper-
ator measuring the energy derivative [4]. The instantaneous ampli-
tude is obtained from Eq. (4). We call the combination of Eq. (6),(7)
a Prony ESA.

The advantages of the ESAs are efficiency, low computational
complexity and excellent time resolution (5-sample window) [3].
The main disadvantage is a moderate sensitivity to noise. A more
systematic approach is, hereby, developed where we first interpo-
late the discrete-time signal using smooth splines [6, 7], and then
apply the continuous-time ESA of Eq. (2). We begin with a brief
background on splines and then develop and test the new algorithm.

2. SPLINE SIGNAL INTERPOLATION

2.1. Exact Splines

Spline functions are piecewise polynomials constructed as a lin-
ear combination of B-Splines. A spline function of order n has
continuous (smooth) derivatives up to order n − 1, which is very
important when using Ψ.



Given the initial signal samples x[n], n = 1, . . . , N , the inter-
polating spline function is given by

gν(t) =
+∞∑

n=−∞
c[n]βν(t− n) (8)

where βν(t) is the B-spline of order ν, and the coefficients c[n]
depend only on the data x[n] and the analytic expression of the
B-spline. The B-spline can be formed as the the (ν + 1) th–fold
convolution of the zeroth–order B-spline with itself:

βν(t) ≡ β0(t) ∗ β0(t) ∗ · · · ∗ β0(t)︸ ︷︷ ︸
(ν+1) times

,

where the zeroth–order B-spline is defined by

β0(t) =

{
1 if −1/2 < t < 1/2
1/2 if |t| = 1/2
0 otherwise

Using the discrete B-spline bν(n) ≡ βν(n), Eq. (8) becomes

gν(n) = (c ∗ bν)(n) (9)

Note that for the exact interpolation problem is gν(n) = x[n]. By
transforming Eq. (9) in the Z domain,

C(z) =
X(z)
Bν(z)

(10)

Thus, the spline coefficients c[n] can be determined recursively
from the above equation. Note that each original sample gν(n) =
x[n] is resynthesized by the contributions of ν + 1 neighbor spline
coefficients.

2.2. Smooth Splines

We have used splines to improve the performance of the ESA algo-
rithm. Several experiments were conducted concerning different
kinds of splines. In these experiments we used noisy AM-FM sig-
nals with different levels of SNR. The results were disappointing
as the exact fitting of the curve, due to the presence of noise, was
creating large estimation errors. This led to the search for a solution
dealing with the problem of noise. The next step was to find a way
to optimally interpolate signal samples passing closely but not ex-
actly through them. Smooth splines are ideal for this purpose. The
main advantage of smooth splines is that the interpolating polyno-
mial does not pass through the signal samples but close enough.
This concept is similar to the idea of polynomial fitting with least
squares.

The smooth spline interpolating function is the function sν of
order ν = 2r − 1 that minimizes the mean square error criterion

ε =
+∞∑

n=−∞
(x[n] − sν(n))2

︸ ︷︷ ︸
εd

+λ
∫ +∞

−∞

(
∂rsν(x)
∂xr

)2

dx︸ ︷︷ ︸
εs

where εd is the mean square error of the interpolation function and
εs is the mean square error introduced by the need for a smoothed
curve. This criterion is a compromise between the need for close-
to-the-data points interpolation curve and the need for a smoothed

curve. The positive parameterλ quantifies how smooth the interpo-
lating curve will be and how close to the data points the interpolant
will pass. For λ = 0 there is no smoothing and the interpolation
curve fits exactly the signal samples. If λ �= 0, the deviation from
the data samples increases with the parameter λ.

As shown in [6, 7], the interpolating function sν(t) minimizing
the mean square error ε is a linear combination of splines βν , as in
Eq. (8), but the coefficients c[n] are computed as the output of an
IIR filter that is different from the filter in (10):

C(z) = Hλ
ν (z)X(z) =

X(z)
Pλ

ν (z)
(11)

where Pλ
ν (z) is equal to

Pλ
ν (z) = Bν(z) + λ(−z + 2 − z−1)

ν+1
2 (12)

The IIR filter Hν(z) has a symmetric impulse response and all
its poles are inside the unit circle. Thus, the spline coefficients
c[n] can be determined stably via a few recursive equations [6, 7].
Henceforth, smooth splines with λ �= 0 are applied unless stated
otherwise.

3. SPLINE ESA

Our previous discussion has established that, by using the theory of
smooth splines, we can interpolate the original discrete-time signal
x[n] using smooth splines of νth order and create a continuous-time
signal

sν(t) =
+∞∑

n=−∞
c[n]βν(t− n) (13)

Obviously, the signal sν(t) is a continuous-time expansion of the
original discrete signal x[n]. Now, the basic idea of the new ap-
proach for ESA-based demodulation is to apply the continuous-time
energy operator Ψ and the continuous ESA to the continuous-time
signal sν(t), instead of using the discrete energy operator Ψd and
the DESA on the discrete signal x[n]:

Ψ[sν(t)] =

[
∂sν(t)
∂t

]2

− sν(t)
∂2sν(t)
∂t2

(14)

In order to use the continuous ESA we have to compute the first-,
second- and third-order derivatives of the signal. Given the coef-
ficients c[n] of the spline interpolation (13), we can derive the fol-
lowing closed-form expressions for these derivatives that involve
only the coefficients c[n] and the B-spline functions:

∂sν(t)
∂t

=
∑

n

(c[n] − c[n− 1])βν−1(t− n+ 1/2) (15)

∂2sν(t)
∂t2

=
∑

n

(c[n+ 1] − 2c[n] + c[n− 1])βν−2(t− n)

(16)
∂3sν(t)
∂t3

=
∑

n

(c[n+ 1] − 3c[n] + 3c[n− 1] − c[n− 2])

·βν−3(t− n+ 1/2)
(17)

By using these signal derivatives in the continuous ESA equations
(2), we can estimate the instantaneous amplitudea(t) and frequency



ω(t) of the continuous signal sν(t). Finally, by sampling these
information-bearing signals, we obtain estimates of the instanta-
neous amplitude A[n] = a(nT ) and frequency Ω[n] = Tω(nT )
of the original discrete signal x[n]. This whole approach above is
called the Spline ESA.

An important part of the Spline ESA is the computation of the
spline coefficients c[n]. Next we discuss the details of this pro-
cedure. First, we find the zeros of the denominator polynomial
Pλ

ν (z) in Eq. (11). Due to the symmetric form of this polynomial,
the zeros come in pairs (zi, z−1

i ), i = 1, . . . , r. Thus, the transfer
function in Eq. (11) can be written as

Hν(z) = c0
r∏

i=1

−zi
(1 − ziz−1)(1 − ziz) (18)

From Eq. (11), (18) and [6, 7] the recursive equations are:

y+i [n] = yi−1[n] + ziy+[n− 1] , n = 2, . . . , N

yi[N ] = ai(2y+i [N ] − yi−1[N ])

yi[n] = zi(yi[n+ 1] − y+i [n]) , n = N − 1, . . . , 1

(19)

where ai = −zi/(1 − z2i ), yi−1[n] is the input and yi[n] is the
output of a digital filter with transfer function

Ti(z) =
−zi

(1 − ziz−1)(1 − ziz) ,

and y0[n] = x[n]. If the above step is repeated as many times as
the number of pole pairs (zi, z−1

i ), the final output sequence yr[n]
will equal c[n]. As boundary condition we set,

y+i [1] =
k0∑

i=1

z
|k−1|
i yi−1[k]

where k0 is an integer that ensures a certain level of precision.
We present an example to clarify some of the steps in determining

c[n] for splines of order ν = 5(r = 3) and for two different values
of λ, λ = 0 and λ = 0.5. First, if λ = 0, we have interpolation
with exact splines of order ν = 5. The denominator of the transfer
functionH5(z) will be P5(z) ≡ B5(z) and the poles will be,

z1 = −0.04309, z2 = 0.43057,
z3 = z−1

1 , z4 = z−1
2

Now, for λ = 0.5, by setting r = 3 in Eq. (12) we find the poles
ofH5(z) = 1/P5(z):

z1 = 0.32548,
z2 = 0.32154 − 0.47128i, z3 = 0.32154 + 0.47128i,
z4 = z−1

1 , z5 = z−1
2 , z6 = z−1

3

In both cases we find c[n] by using the algorithm of Eq. (19). The
only difference between the case with λ = 0 and the case with
λ �= 0 is the number and the values of the poles. Finally, having
computed c[n], the coefficient signal is convolved with the B-spline
βν to yield the inerpolating signal sν .

In general, the evaluation of the spline coefficients by the fil-
tering approach presented above is less computationally complex
than the standard numerical analysis approach using sparse Toeplitz
matrices.

4. EXPERIMENTS AND DISCUSSION

For the experiments conducted we used parametric AM-FM signals,
[1, 3] and different levels of white Gaussian noise:

x[n] = (1 + 0.05k cos(
πn

100
)) cos(

πn

5
+m sin(

πn

100
)) + e[n],

where e[n] is the added noise andm = 1, . . . , 10, k = 1, . . . , 10.
The first experiments concerned Spline ESA using exact splines,
from fifth to seventh order. The experimental results were not so
promising as the frequency mean estimation error of the spline ESA
was always worse than the corresponding one of the Prony ESA
and the DESA as shown in Fig. 1.
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Fig. 1. Comparison of Spline ESA with exact splines with DESA
and Prony ESA.

The exact spline fitting is responsible for the large mean square
error of the algorithm, as the noisy samples insert a significant er-
ror. Since noisy signals have large variations and sharp edges, the
need of a smoothing factor is apparent. So, the next series of exper-
iments was conducted using smooth splines with different values of
λ through a wide range of SNR values, which are shown in Fig. 2.
Spline ESA using smooth splines performs better than the DESA
and the Prony ESA in the presence of noise. The choise of value of
λ is not completely arbitrary. We have attempted to find experimen-
tally a good value for λ for different SNRs. Fig. 3 shows the mean
error of the cubic and fifth–order smooth splines for various values
of λ when SNR=35 dB. In these experiments the corresponding
mean square error curves had minima for particular values of λ.
More specifically, the minima occurred when λ ∈ [0.1, 1] inde-
pendently of the SNR's values. Note that, the mean square error
of the fifth–order smooth spline is always smaller that the corre-
sponding one of the cubic smooth spline independently of the value
of λ or SNR. The optimal value of λ is not known and can be de-
termined only through experimentation. This happens because the
errors depend on the SNR, the signal, and the application.

Now, we compare the Spline ESA with DESA and Prony ESA,
fixing λ equal to a constant value. For SNR= ∞, λ could be
set to zero. Otherwise for SNR�= ∞, λ takes values in the order
of 0.25. The order of the smooth spline will be ν = 5 (r = 3)
because the mean square error of the Spline ESA with fifth-order



30 35 40 45 50 55 60 65 70
0

5

10

15

20

25

SNR  (dB)

F
re

qu
en

cy
 E

st
im

at
io

n 
M

ea
n 

A
bs

. E
rr

or
 %

Prony ESA              
DESA                   
Smooth Splines, Order=3
Smooth Splines, Order=5

Fig. 2. Comparison of Spline ESA with smooth splines (λ = 0.25)
with DESA and Prony ESA.

smooth splines is always smaller than the error of the Spline ESA
with cubic splines, as it is shown in Fig. 3. In addition, by setting
ν = 5, the time–window (i.e., the number of coefficients required
to produce one output sample) of Spline ESA is equal to that of the
DESA and the Prony ESA.

We tested all three algorithms for SNR= +∞ (no noise is added
to the signal) and for SNR=45 dB. In Table 1 we compare the DESA,
Prony ESA and Spline ESA with different values of λ. When
the SNR is small, smooth splines have better performance and the
estimation error is much smaller than the corresponding one for
the exact splines. This is the main reason for using smooth splines
instead of exact ones. The Prony ESA algorithm, even though it
yields very good results (mean square error 0.14%) when there is
no noise, is not robust for noisy signals and the corresponding error
increases dramatically as the signal's SNR is decreasing. On the
contrary, the DESA and especially, the Spline ESA, when λ �= 0,
are more robust for signals with low SNRs. This fact is clearly
represented in Fig. 2 and Table 1. Also, it must be noticed that in
Fig. 2 the value of λ does not change with the SNR values (its value
is constant). This is why for SNR values bigger than 70 dB, DESA
seems to perform better than Spline ESA. Changing λ in inverse
proportion to the SNR value, the Spline ESA yields a mean square
error that is smaller than the corresponding one of DESA.

Table 1. Comparison of ESA Demodulation Algorithms.

Frequency Mean Absolute Error (%)

SNR= +∞ dB

DESA Prony ESA Spline ESA Spline ESA
ν = 5, λ = 0 ν = 5, λ = 0.25

0.38767 0.14774 0.37205 0.79749

SNR=45 dB

DESA Prony ESA Spline ESA Spline ESA
ν = 5, λ = 0 ν = 5, λ = 0.25

1.32737 6.02938 4.56928 0.95701
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Fig. 3. Mean Square Frequency Error for Spline ESA with cubic
and fifth-order smooth splines when SNR=35 dB.

In conclusion the proposed new algorithm provides an efficient
way to represent a discrete signal in continuous-time domain, which
is very important for applying the Teager-Kaiser energy operator
where the signal's derivatives must be determined with high preci-
sion. Further, using smooth splines gives the new algorithm some
additional robustness in the presence of noise.
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