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ABSTRACT

A new algorithm is proposed for demodulating discrete-time
AM-FM signals, which first interpolates the signals with smooth
splines and then uses the continuous-time energy separation al-
gorithm (ESA) based on the Teager-Kaiser energy operator. This
spline-based ESA retains the excellent time resol ution of the ESAs
based on discrete energy operators but performs better in the pres-
ence of noise. Further, its dependence on smooth splines alows
some optimal trade-off between data fitting versus smoothing.

1. INTRODUCTION

Demodulating AM-FM signals, i.e., nonstationary sines

z(t) = a(t) cos(/ w(T)dT) (1)

that have a combined amplitude modulation (AM) and frequency
modulation (FM), has been a significant research problem with
many applications in communications systems, speech processing,
and general nonstationary signal analysis. To solve it, a new ap-
proach was devel oped in the 1990's based on nonlinear differential
operators that can track the instantaneous energy or its derivatives
of a source producing an oscillation [2, 4]. The main such rep-
resentative is the continuous-time Teager-Kaiser energy operator
Uz(t)] = [£(t)]? — z(t)i(t), where &(t) = dx(t)/dt. Applied
to the AM-FM signa (1), ¥ yields the instantaneous source en-
ergy, i.e. Uz(t)] ~ a’(t)w?(t), where the approximation error
becomes negligible [3] if the instantaneous amplitude a(¢) and in-
stantaneous frequency w(t) do not vary too fast or too much with
respect to the average value of w(t). Thus, AM-FM demodulation
can be achieved by separating the instantaneous energy into itsam-
plitude and frequency components. ¥ isthe main ingredient of the
first energy separation algorithm (ESA)

~w(t) , ——— ~alt 2
(t) ) la(t)] 2

developed by Maragos et al. [3] and used for signal and speech
AM-M demodulation.
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The instantaneous energy separation methodology has led to
several classes of agorithms for demodulating discrete-time AM-
FM signals

z[n] = z(nT) = An] cos(/ Q[k]dEk) (3)

where A[n] = a(nT) and Q[n] = Tw(nT). A direct approach is
to apply the discrete-time Teager-Kaiser operator U4[z,] = 22 —
Zn—1Tnt+1, Where z,, = x[n], to the discrete AM-FM signa (3)
and derive discrete energy equations of the form

Uglzn] ~ A? [n] sin? (Q[n]) 4
Thisyields the following algorithm, called Discrete ESA [3]:

arccos (17 Yalen 71"2\11}]1;[:%[1"*1 —n] ) ~ Q[n] (5)
Yglzn] -
sin2 (Q[n]) ~ |ALn]] (6)

Another approach involves estimating the instantaneous frequency
by modeling the discrete-time signa «x,, via the exact Prony, as
shownin[1, 5]. Thisyieldsalgorithmsthat al so contain the discrete
energy operator as their main ingredient. The best such algorithm

is[1]
arccos (T3[m1]\;;[£i5xnl]> ~ Q[n] @)

whereYs[z,] = TnZn41—Tn—1Tn42 isathird-order energy oper-
ator measuring the energy derivative[4]. Theinstantaneous ampli-
tudeisobtained from Eq. (4). Wecall thecombination of Eq. (6),(7)
aProny ESA.

The advantages of the ESAs are efficiency, low computational
complexity and excellent time resolution (5-sample window) [3].
The main disadvantage is a moderate sensitivity to noise. A more
systematic approach is, hereby, developed where we first interpo-
late the discrete-time signal using smooth splines [6, 7], and then
apply the continuous-time ESA of Eq. (2). We begin with a brief
background on splines and then devel op and test the new algorithm.

2. SPLINE SIGNAL INTERPOLATION

2.1. Exact Splines

Spline functions are piecewise polynomials constructed as a lin-
ear combination of B-Splines. A spline function of order n has
continuous (smooth) derivatives up to order n — 1, which is very
important when using .



Given theinitia signal samplesz[n], n = 1,..., N, theinter-
polating spline function is given by

—+oo

9u(t) = Y enlBu(t —n) ®

n=-—o0

where S, (t) is the B-spline of order v, and the coefficients c[n]
depend only on the data xz[n] and the analytic expression of the
B-spline. The B-spline can be formed as the the (v + 1) th—fold
convolution of the zeroth—order B-spline with itself:

Bu(t) = Po(t) * Po(t) * - - x fo(),

(v+1) times

where the zeroth—order B-spline is defined by
1 if—1/2<t<1/2
Bo(t)=4¢ 1/2 if|t|=1/2

0 otherwise
Using the discrete B-spline b, (n) = 8. (n), Eq. (8) becomes

gv(n) = (cxb,)(n) 9

Note that for the exact interpolation problemis g, (n) = z[n]. By
transforming Eqg. (9) in the Z domain,

(10)

Thus, the spline coefficients c[n] can be determined recursively
from the above equation. Note that each original sample g, (n) =
z[n] isresynthesized by the contributions of v + 1 neighbor spline
coefficients.

2.2. Smooth Splines

We have used splinesto improve the performance of the ESA algo-
rithm. Severa experiments were conducted concerning different
kinds of splines. In these experiments we used noisy AM-FM sig-
nals with different levels of SNR. The results were disappointing
as the exact fitting of the curve, due to the presence of noise, was
creating large estimation errors. Thisled tothesearch for asolution
dealing with the problem of noise. The next step wasto find away
to optimally interpolate signal samples passing closely but not ex-
actly through them. Smooth splinesareideal for this purpose. The
main advantage of smooth splinesis that the interpolating polyno-
mial does not pass through the signal samples but close enough.
This concept is similar to the idea of polynomial fitting with least
sguares.

The smooth spline interpolating function is the function s, of
order v = 2r — 1 that minimizes the mean square error criterion

+oo oo i )
€= Z (x[”]*su(n))2+A[ <8§;,@) dz

n=-—oo

€q s
where ¢4 isthe mean square error of the interpolation function and
€5 isthe mean square error introduced by the need for a smoothed
curve. This criterion is a compromise between the need for close-
to-the-data points interpolation curve and the need for a smoothed

curve. Thepositive parameter \ quantifieshow smooth theinterpo-
lating curve will be and how close to the data points the interpolant
will pass. For A = 0 there is no smoothing and the interpolation
curve fits exactly the signal samples. If A # 0, the deviation from
the data samples increases with the parameter \.

Asshown in[6, 7], theinterpolating function s, (¢) minimizing
the mean square error ¢ isalinear combination of splines 8., asin
Eq. (8), but the coefficients c[n] are computed as the output of an
IIR filter that is different from the filter in (10):

O(z) = HX(2)X(2) = ;;(fj) (
where P (z) isequal to
PM2) = Bu(2) + A~z +2— 2z )% (12)

The lIR filter H, (z) has a symmetric impulse response and all
its poles are inside the unit circle. Thus, the spline coefficients
¢[n] can be determined stably viaafew recursive equations 6, 7].
Henceforth, smooth splines with A # 0 are applied unless stated
otherwise.

3. SPLINE ESA

Our previous discussion has established that, by using the theory of
smooth splines, we can interpolate the original discrete-time signal
x[n] using smooth splinesof vth order and create acontinuous-time
signal

400

s(t)= Y clnlBu(t—n) (13)

n=—oo

Obviously, the signa s, (t) is a continuous-time expansion of the
original discrete signal z[n]. Now, the basic idea of the new ap-
proach for ESA-based demodul ationisto apply thecontinuous-time
energy operator ¥ and the continuous ESA to the continuous-time
signal s, (t), instead of using the discrete energy operator ¥, and
the DESA on the discrete signal z[n]:

o) = | 20] e aa

In order to use the continuous ESA we have to compute the first-,
second- and third-order derivatives of the signal. Given the coef-
ficients ¢[n] of the spline interpolation (13), we can derive the fol-
lowing closed-form expressions for these derivatives that involve
only the coefficients c[n] and the B-spline functions:

885,5“) = Z (cn] —cn—1]) Bu—1(t —n+1/2) (15)
0 ;:2(75) = Z (c[n+ 1] — 2¢[n] + ¢c[n — 1]) Bu—2(t — n)

3 ) (16)
0 ;;(t) = > (c[n+1] = 3cln] + 3c[n — 1] = cln — 2])

'ﬁyfg(t —n—+ 1/2)
17
By using these signal derivatives in the continuous ESA equations
(2), wecan estimatetheinstantaneousamplitudea(t) and frequency



w(t) of the continuous signal s, (). Finaly, by sampling these
information-bearing signals, we obtain estimates of the instanta-
neous amplitude A[n] = a(nT") and frequency [n] = Tw(nT)
of the origina discrete signal z[n]. This whole approach aboveis
caled the Spline ESA.

An important part of the Spline ESA is the computation of the
spline coefficients c[n]. Next we discuss the details of this pro-
cedure. First, we find the zeros of the denominator polynomial
P (z) inEq. (11). Dueto the symmetric form of this polynomial,
the zeros comein pairs (z;, z[l), i=1,...,r. Thus, thetransfer
function in Eq. (11) can be written as

—z
H,(2) = e ] ] (1—ziz- (1 — zi2) (18)

i=1

From Eq. (11), (18) and [6, 7] the recursive equations are:
yi[n] =viciln] + 2yt n—1 ,n=2,...,N

Yi[N] = ai(2y;" [N] = yi-1[N]) (19

yiln] = zi(yiln + 1] —y [n]) ,n=N-1,...,1

where a; = —z;/(1 — 22), yi—1[n] isthe input and y;[n] is the
output of adigital filter Wlth transfer function

—Zi

Tu(z) = (1= ziz7 1) (1 — z2)’

and yo[n] = z[n]. If the above step is repeated as many times as
the number of pole pairs (z;, z; '), thefinal output sequence y, [n]
will equal ¢[n]. Asboundary condition we Set,

ko
)= Zzlk_l‘yifl[k‘]
i=1

where ko is an integer that ensures a certain level of precision.
We present an exampleto clarify someof thestepsin determining
c[n] for splinesof order v = 5(r = 3) and for two different values
of A, A = 0and A = 0.5. First, if A = 0, we have interpolation
with exact splines of order » = 5. The denominator of the transfer
function H5(z) will be Ps(z) = Bs(z) and the poles will be,

z1 = —0.04309,

-1
23 =z ,

z2 = 0.43057,

—1
24 = Z9

Now, for A = 0.5, by setting » = 3 in Eq. (12) we find the poles
of H5(Z) = 1/P5(Z)

21 = 0.32548,
2o = 0.32154 — 0.47128i, 23 = 0.32154 + 0.47128,

—1 —1 —1
24 =21 , B5 = 29 , 2622’3

In both cases we find ¢[n] by using the agorithm of Eq. (19). The
only difference between the case with A = 0 and the case with
A # 0 isthe number and the values of the poles. Finally, having
computed c[n], the coefficient signal isconvolved with the B-spline
[, toyield theinerpolating signal s,..

In general, the evaluation of the spline coefficients by the fil-
tering approach presented above is less computationally complex
than the standard numerical analysisapproach using sparse Toeplitz
matrices.

4. EXPERIMENTSAND DISCUSSION

For theexperimentsconducted we used parametric AM-FM signals,
[1, 3] and different levels of white Gaussian noise:

z[n] = (1 + 0.05k cos( 00)) cos(Tr5 +msm( ))Jre[n]

100
where e[n] isthe added noiseand m = 1,...,10,k = 1,...,10.
The first experiments concerned Spline ESA using exact splines,
from fifth to seventh order. The experimental results were not so
promising asthefrequency mean estimation error of thespline ESA
was always worse than the corresponding one of the Prony ESA
and the DESA as shown in Fig. 1.
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Fig. 1. Comparison of Spline ESA with exact splines with DESA
and Prony ESA.

The exact splinefitting is responsible for the large mean square
error of the algorithm, as the noisy samplesinsert a significant er-
ror. Since noisy signals have large variations and sharp edges, the
need of asmoothing factor isapparent. So, the next series of exper-
imentswas conducted using smooth splineswith different val ues of
A through awide range of SNR values, which are shown in Fig. 2.
Spline ESA using smooth splines performs better than the DESA
and the Prony ESA in the presence of noise. The choise of value of
Aisnot completely arbitrary. We have attempted to find experimen-
tally agood value for \ for different SNRs. Fig. 3 shows the mean
error of the cubic and fifth—order smooth splinesfor various values
of A when SNR=35 dB. In these experiments the corresponding
mean square error curves had minima for particular values of .
More specifically, the minima occurred when A € [0.1, 1] inde-
pendently of the SNR's values. Note that, the mean square error
of the fifth—order smooth spline is always smaller that the corre-
sponding one of the cubic smooth splineindependently of thevalue
of A or SNR. The optimal value of \ is not known and can be de-
termined only through experimentation. This happens because the
errors depend on the SNR, the signal, and the application.

Now, we compare the Spline ESA with DESA and Prony ESA,
fixing \ equal to a constant value. For SNR= oo, A could be
set to zero. Otherwise for SNR# oo, A takes values in the order
of 0.25. The order of the smooth spline will bev = 5 (r = 3)
because the mean square error of the Spline ESA with fifth-order
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Fig. 2. Comparison of Spline ESA with smooth splines (A = 0.25)
with DESA and Prony ESA.

smooth splinesis always smaller than the error of the Spline ESA
with cubic splines, asit is shown in Fig. 3. In addition, by setting
v = 5, thetime-window (i.e., the number of coefficients required
to produce one output sample) of Spline ESA isequal to that of the
DESA and the Prony ESA.

Wetested all three algorithmsfor SNR= +o0 (no noiseisadded
tothesignal) and for SNR=45dB. In Table 1 wecomparethe DESA,
Prony ESA and Spline ESA with different values of A\. When
the SNR is small, smooth splines have better performance and the
estimation error is much smaller than the corresponding one for
the exact splines. Thisisthe main reason for using smooth splines
instead of exact ones. The Prony ESA algorithm, even though it
yields very good results (mean square error 0.14%) when thereis
no noise, isnot robust for noisy signals and the corresponding error
increases dramatically as the signal's SNR is decreasing. On the
contrary, the DESA and especialy, the Spline ESA, when A # 0,
are more robust for signals with low SNRs. This fact is clearly
represented in Fig. 2 and Table 1. Also, it must be noticed that in
Fig. 2thevalue of \ doesnot changewiththe SNR values (itsvalue
isconstant). Thisiswhy for SNR values bigger than 70 dB, DESA
seems to perform better than Spline ESA. Changing A in inverse
proportion to the SNR value, the Spline ESA yields a mean square
error that is smaller than the corresponding one of DESA.

Table 1. Comparison of ESA Demodulation Algorithms.
Frequency Mean Absolute Error (%)

SNR= +o00 dB

DESA | Prony ESA Spline ESA Spline ESA
v=>5A=0| v=5,A=0.25

0.38767 0.14774 0.37205 0.79749

SNR=45 dB

DESA | Prony ESA Spline ESA Spline ESA
v=5AX=0| v=5,A=0.25

1.32737 6.02938 4.56928 0.95701
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Fig. 3. Mean Square Frequency Error for Spline ESA with cubic
and fifth-order smooth splines when SNR=35 dB.

In conclusion the proposed new algorithm provides an efficient
way torepresent adiscretesignal in continuous-timedomain, which
is very important for applying the Teager-Kaiser energy operator
where the signal's derivatives must be determined with high preci-
sion. Further, using smooth splines gives the new algorithm some
additional robustness in the presence of noise.
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