
GENERIC SCHEDULING METHODS FOR A LINEAR

QR ARRAY SoC PROCESSOR

Zhaohui Liu G. LightBody* R. Walke+ Y.Hu* J.McCanny

DSiP Laboratory, School of Electrical and Electronics Engineering,
The Queen’s University of Belfast, Belfast BT 9 5AH, N. Ireland

ISS Limited, 50 Malone Road, Belfast BT9 5BS, N Ireland*
DERA, St. Andrew’s Road, Malvern, England+

ABSTRACT
A scheduling method for implementing a
generic linear QR array processor architecture
is presented. This improves on previous work.
It also considerably simplifies the derivation of
schedules for a folded linear system, where
detailed account has to be taken of processor
cell latency. The architecture and scheduling
derived provide the basis of a generator for the
rapid design of System-on-a-Chip (SoC) cores
for QR decomposition.

1. INTRODUCTION

Recursive Least Squares (RLS) filtering is a
key signal processing technique, which has a
very widespread potential usage if this can be
implemented cost effectively in silicon [1,2].
One such application is adaptive beamforming
in which the system aims to suppress signals
from every direction other than the desired
“look direction” by forming null steering
beams. For RLS filtering, methods based on
QR-decomposition have been popular and the
basic structure of the QR algorithm can be
implemented using a triangular systolic array
architecture [3,4]. In recent papers, we have
considered the practical issue of implementing
QR systolic systems on a single chip and show
how a novel mapping and folding technique

can be employed to produce a linear
architecture with local communication and
100% efficiency [5,6]. The scheme presented
involves quite complex scheduling and re-
timing, the details of which can be dependent
on specific implementation details. The
purpose of this paper is to extend this work by
presenting a simpler and much more generic
scheduling scheme that automatically accounts
for parameters such the number of input data
values and processing cell latency. A key
motivation has been the creation of a generic
and re-usable architecture for the rapid design
and synthesis of System-on-Chip (SoC) IP
cores.

2. SCHEDULING AND TIMING OF
LINEAR ARRAY

2.1 Linear array

The folding and projection used for the
derivation of the linear architecture used is
depicted in figures 1 and 2. This is based on
the scheme described in reference [6]. This
considers the example of a 7 input triangular
array. Here correct operation is ensured by data
flowing down the schedule lines. Obviously,
the scheduling required is complex. In this
example the architecture is constructed using
one boundary cell and 3 internal cells, depicted
by the circle and squares, respectively.

Figure 1: QR mapping to a linear architecture

The rotation parameters, a and b, are
calculated in the boundary cell and these are
passed unchanged along internal cells
continuing the rotation. The output values of
the internal cells, x, become the input values
for the adjacent cells; meanwhile, new inputs
are fed into the array. Multiplexers at the top of
the array ensure the correct scheduling of data
inputs. Those at the bottom cater for the
different directions of data flow that occur
between rows in Figure 1.

2.2 Scheduling

For N=2m+1 input channels, m+1 processors
are required. In our previous work [6] it was
shown that (a) the required data schedule is
periodic repeating every 2m+1 cycles, (b)
external x inputs are also fed into the linear
array, also every 2m+1 cycles and (c) the input
to internal cells come either from an adjacent

Figure 2. 7-input linear array

internal cell or are input externally.
From this, the detailed scheduling of the

parameterized QR core is implemented in two
steps. Firstly, we deduce the data scheduling
principles related to the input channels when
processor latency is unity. We then consider
the influence of latency and scale the schedule
sequence to derive the control data required for
each processing cell.

Consider processing elements, labeled as

0PE , 1PE … mPE , where 0PE is the
boundary cell, and the others are internal cells.
In our previous work [6], control was
determined by whether the x input is derived
from within the array or provided externally
and by whether the (a, b) input direction is
folded or unfolded. Because there is not a clear
relationship between data flow and whether
these input directions are folded, an alternative
and more structured approach is the following.
For each internal cell, iPE , in Figure 2, four

different possibilities for),(ba and x exist (if

iPE is the last internal cell, let ii PEPE =+1):

•),(ba comes from 1−iPE , and x comes

from the output of 1+iPE - denoted as 0;

•),(ba comes from 1+iPE , and x comes

from the output of 1−iPE - denoted as 1;

•),(ba comes from 1−iPE , and x comes
from the external input - denoted as 2;

δ, product
of cosines

x values Rotation
parameters

a, b

Data path key:

IC2 BC1

δ′

δ

d′

d
x

Output

y(n)

δ1(n) =1 x2(n) x1(n)

IC3

x6(n)
x3(n)

r

r′

r

r′

IC4

x5(n)
x4(n)

r

r′

MUX MUX MUX

MUX

MUX

MUX

MUX

MUX

MUX

MUX

 Interleave
 cells

Boundary

 cells

(d) Locally
connected

 array

(e) Projection of cells on to a linear array of
 locally connected processors

A

B

B

A
 B

A

Move cells

(a) Triangular array
 (c) Rectangular array

 (b) Modified array

B

A

1
Cycle

 number

2,3

5,7

1,4

5,6

1,3

4,7

1,2

3,7

4,5

2,7

3,6

1,7

3,5

2,6

3,4

1,6

2,5

6,7

2,4

1,5

7,7

4,4

6,6

3,3

2,2

1,1

5,5

Cell processes
 projected onto
 linear array

1
2

1

4

5

7

6

4,6

Table 1. Control data for schedule

a) Input channel number is 7

Index
1PE 2PE 3PE

0=j 0 1 0

1=j 2 0 1
2=j 0 2 0
3=j 0 0 2
4=j 0 0 3

5=j 0 3 0
6=j 3 0 1

b) Input channel number is 9

Index
1PE 2PE 3PE 4PE

0=j 0 1 0 1

1=j 2 0 1 0
2=j 0 2 0 1
3=j 0 0 2 0
4=j 0 0 0 2

5=j 0 0 0 3
6=j 0 0 3 0
7=j 0 3 0 1
8=j 3 0 1 0

•),(ba comes from 1+iPE , and x comes
from the external input - denoted as 3;

At the same time, we express the control
data index as

)12(mod += mTj (1)
Where (2m+1) stands for the scheduling

period, and T is clock cycle. Using these labels
and referring to the data flow in Figure 1, we
can derive the following control signals for a
schedule - based on unit latency - for the cases
of 7 and 9 input channels respectively. This is
presented in table 1. From this table, it is clear
that the control signal changes regularly
according to the input channel numbers. This
can be represented mathematically. Letting

jiC , be the control data of iPE at the jth clock

cycle then the control signal can be generated
using a very simple procedure:







−=

−=
+=







−=

−=
−=

== +

;,1

,,0

2,,2

;,1

,,0

0,,1

3,2

:)1

,

,

,

,

1,,

oddismjifC

evenismjifC

mmjfor

evenisjmifC

oddisjmifC

mjfor

CC

PEfor

jm

jm

jm

jm

mmmm

m

L

L







=

=
−=

+ 0

0

,1,,2,1)2

1,

,

mi

mi

C

C

mifor L

1,1,

1,1,

1,,0

0,,1

1,,1)3

−+

++

=
−=

=
−=

−=

jiji

jiji

CC

mjfor

CC

mjfor

mifor

L

L

L

2.3 Retiming

The above control data is only suitable in
systems with unit latency. When latency is
greater than unity, retiming is necessary to
ensure a valid schedule and to maintain 100%
hardware utilization. Because of the existence
of latency, the interval between two continuous
control data signals is therefore scaled
accordingly i.e. by the latency. Moreover, in
the case of the periodic control data signals,
their sequence is shuffled. The relationship
between the control signals and the clock cycle
can thus be expressed as

]2,0[

)12(mod)12(mod)(

mj

mTmLj IC

∈
+=+⋅

 (2)

where ICL is processing cell latency, 12 +m is
the control data cycle, j is the index of control

Figure 3. Shuffle schedule sequence
(712,3 =+= mLIC)

data and T is clock period. For example, if
3)12(mod =+mT then, from equation (2),

1=j and thus from table 1(a), the control data
is {2, 0, 1}. This defines how processors fetch
(a, b) and x signals. Figure 3 shows the retimed
schedule and depicts the fetching route for this
example.

These control signals can be applied
directly to the multiplexers shown in Figure 2
and thus it is very easy to change these signals
to suit different array dimensions and cell
latencies. When coupled with processor cells
implemented using parameterized IP cores
[6,7] (e.g. parameterized arithmetic processors)
this provides a very elegant and direct
approach to the creation of a generic core for
implementing QR array processor systems in
silicon. Typical parameters include the number
of input values x, data wordlengths and levels
of pipelining used within specific arithmetic
building blocks.

3. DISCUSSION

Using the generic scheduling methods
described, a parameterized QR core for
adaptive beamforming has been captured in a
hierarchical fashion using VHDL [7]. The
operation of this core has been verified over a
wide range of parameters and shown to be

suitable for creating and synthesizing silicon
QR systems covering all practical array
dimensions and wordlengths and processing
cell latencies. For example, based on 0.35
CMOS triple-layer technology, studies show
that 60 complex QR cells, using 12bit
wordlengths, can fit onto a single chip. (The
corresponding number is 35 cells for the 16-bit
case). This allows such systems to be rapidly
created and the system to be rapidly redesigned
for different application specifications, such as
adaptive beamforming / noise cancellation for
radar, sonar and mobile communications.

REFERENCES

1. S. Haykin, “Adaptive Filter Theory”,
Prentice Hall: Englewood Cliffs, NJ, 1986.

2. J. M. Cioffi and T. Kailath, “Fast
recursive-least-square, transversal filters
for adaptive filtering,” IEEE Trans.
Acoustics, Speech, Signal Processing, vol.
ASSP-32, No. 2, pp. 998-1005, 1984.

3. J. G. McWhirter, “Recursive least squares
minimization using systolic array”, Proc.
SPIE IV, pp. 105-112, 1983

4. T. J. Shepherd and J. G. McWhirter,
“Systolic adaptive beamforming”, chap.5,
Array signal processing, S. Haykin, J.
Litva, and T. J. Shepherd (Eds.), Springer-
Verlag, ISBN 3-440-55224, 1993, pp. 153-
243.

5. R.L. Walke, “High sample rate givens
rotations for recursive least squares”, Ph.D.
Thesis, University of Warwick, 1997.

6. G. lightbody, R.Walke, R. Woods and
J.McCanny. “Linear QR architecture for a
single chip adaptive beamformer”, Journal
of VLSI signal processing system, vol. 24,
pp. 67-81, 2000.

7. J. McCanny, D. Ridge, Y. Hu and J.
Hunter. “Hierarchical VHDL libraries for
DSP ASIC design”, IEEE International
conference on Acoustics, Speech and
Signal Processing ICASSP ’97, Munich,
pp 675-678

1,1 4,5 2,7 3,6

7,7 3,4 1,6 2,5

6,6 2,3 5,7 1,4

5,5 1,2 4,6 3,7

4,4 1,7 3,5 2,6

3,3 6,7 2,4 1,5

2,2 5,6 1,3 4,7

Nk ⋅
1+⋅ Nk

2+⋅ Nk

3+⋅ Nk

4+⋅ Nk
5+⋅ Nk

6+⋅ Nk

(a,b) x

0PE 1PE 2PE 3PE

712 =+= mN

T

