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ABSTRACT 
A scheduling method for implementing a 
generic linear QR array processor architecture 
is presented.  This improves on previous work.  
It also considerably simplifies the derivation of 
schedules for a folded linear system, where 
detailed account has to be taken of processor 
cell latency.  The architecture and scheduling 
derived provide the basis of a generator for the 
rapid design of System-on-a-Chip (SoC) cores 
for QR decomposition. 
 
 
 

1. INTRODUCTION 

Recursive Least Squares (RLS) filtering is a 
key signal processing technique, which has a 
very widespread potential usage if this can be 
implemented cost effectively in silicon [1,2]. 
One such application is adaptive beamforming 
in which the system aims to suppress signals 
from every direction other than the desired 
“look direction” by forming null steering 
beams. For RLS filtering, methods based on 
QR-decomposition have been popular and the 
basic structure of the QR algorithm can be 
implemented using a triangular systolic array 
architecture [3,4].  In recent papers, we have 
considered the practical issue of implementing 
QR systolic systems on a single chip and show 
how a novel mapping and folding technique 

can be employed to produce a linear 
architecture with local communication and 
100% efficiency [5,6]. The scheme presented 
involves quite complex scheduling and re-
timing, the details of which can be dependent 
on specific implementation details. The 
purpose of this paper is to extend this work by 
presenting a simpler and much more generic 
scheduling scheme that automatically accounts 
for parameters such the number of input data 
values and processing cell latency. A key 
motivation has been the creation of a generic 
and re-usable architecture for the rapid design 
and synthesis of System-on-Chip (SoC) IP 
cores.  
  

2. SCHEDULING AND TIMING OF 
LINEAR ARRAY 

 

2.1 Linear array 

The folding and projection used for the 
derivation of the linear architecture used is 
depicted in figures 1 and 2.  This is based on 
the scheme described in reference [6]. This 
considers the example of a 7 input triangular 
array. Here correct operation is ensured by data 
flowing down the schedule lines. Obviously, 
the scheduling required is complex. In this 
example the architecture is constructed using 
one boundary cell and 3 internal cells, depicted 
by the circle and squares, respectively. 
 



 

Figure 1: QR mapping to a linear architecture 

The rotation parameters, a and b, are 
calculated in the boundary cell and these are 
passed unchanged along internal cells 
continuing the rotation. The output values of 
the internal cells, x, become the input values 
for the adjacent cells; meanwhile, new inputs 
are fed into the array. Multiplexers at the top of  
the array ensure the correct scheduling of data 
inputs. Those at the bottom cater for the 
different directions of data flow that occur 
between rows in Figure 1. 

2.2 Scheduling 

For N=2m+1 input channels, m+1 processors 
are required. In our previous work [6] it was 
shown that (a) the required data schedule is 
periodic repeating every 2m+1 cycles, (b)  
external x inputs are also fed into the linear 
array, also every 2m+1 cycles and (c) the input 
to internal cells come either from an adjacent  

Figure 2. 7-input linear array 

internal cell or are input externally. 
From this, the detailed scheduling of the 

parameterized QR core is implemented in two 
steps. Firstly, we deduce the data scheduling 
principles related to the input channels when 
processor latency is unity. We then consider 
the influence of latency and scale the schedule 
sequence to derive the control data required for 
each processing cell. 

Consider processing elements, labeled as 

0PE , 1PE  … mPE , where 0PE  is the 
boundary cell, and the others are internal cells. 
In our previous work [6], control was 
determined by whether the x input is derived 
from within the array or provided externally 
and by whether the (a, b) input direction is 
folded or unfolded. Because there is not a clear 
relationship between data flow and whether 
these input directions are folded, an alternative 
and more structured approach is the following. 
For each internal cell, iPE , in Figure 2, four 

different possibilities for ),( ba  and x  exist (if 

iPE  is the last internal cell, let ii PEPE =+1 ): 

• ),( ba  comes from 1−iPE , and x  comes 

from the output of 1+iPE  - denoted as 0; 

• ),( ba  comes from 1+iPE , and x  comes 

from the output of 1−iPE  - denoted as 1; 

• ),( ba  comes from 1−iPE , and x  comes 
from the external input - denoted as 2;
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Table 1. Control data for schedule

a) Input channel number is 7 

Index 
1PE  2PE  3PE  

0=j  0 1 0 

1=j  2 0 1 
2=j  0 2 0 
3=j  0 0 2 
4=j  0 0 3 

5=j  0 3 0 
6=j  3 0 1 

b) Input channel number is 9 

Index 
1PE  2PE  3PE  4PE  

0=j  0 1 0 1 

1=j  2 0 1 0 
2=j  0 2 0 1 
3=j  0 0 2 0 
4=j  0 0 0 2 

5=j  0 0 0 3 
6=j  0 0 3 0 
7=j  0 3 0 1 
8=j  3 0 1 0 

• ),( ba  comes from 1+iPE , and x  comes 
from the external input - denoted as 3; 

At the same time, we express the control 
data index as 

)12(mod += mTj                               (1) 
Where (2m+1) stands for the scheduling 

period, and T is clock cycle. Using these labels 
and referring to the data flow in Figure 1, we 
can derive the following control signals for a 
schedule - based on unit latency - for the cases 
of 7 and 9 input channels respectively. This is 
presented in table 1. From this table, it is clear 
that the control signal changes regularly 
according to the input channel numbers. This 
can be represented mathematically. Letting 

jiC ,  be the control data of iPE  at the jth clock 

cycle then the control signal can be generated 
using a very simple procedure: 







−=

−=
+=







−=

−=
−=

== +

;,1

,,0

2,,2

;,1

,,0

0,,1

3,2

:)1

,

,

,

,

1,,

oddismjifC

evenismjifC

mmjfor

evenisjmifC

oddisjmifC

mjfor

CC

PEfor

jm

jm

jm

jm

mmmm

m

L

L

 







=

=
−=

+ 0

0

,1,,2,1)2

1,

,

mi

mi

C

C

mifor L

 

1,1,

1,1,

1,,0

0,,1

1,,1)3

−+

++

=
−=

=
−=

−=

jiji

jiji

CC

mjfor

CC

mjfor

mifor

L

L

L

 

2.3 Retiming 

The above control data is only suitable in 
systems with unit latency. When latency is 
greater than unity, retiming is necessary to 
ensure a valid schedule and to maintain 100% 
hardware utilization. Because of the existence 
of latency, the interval between two continuous 
control data signals is therefore scaled 
accordingly i.e. by the latency. Moreover, in 
the case of the periodic control data signals, 
their sequence is shuffled. The relationship 
between the control signals and the clock cycle 
can thus be expressed as 

]2,0[

)12(mod)12(mod)(

mj

mTmLj IC

∈
+=+⋅

  (2) 

where ICL  is processing cell latency, 12 +m  is 
the control data cycle, j is the index of control 



Figure 3. Shuffle schedule sequence 
( 712,3 =+= mLIC ) 

data and T is clock period. For example, if 
3)12(mod =+mT  then, from equation (2), 

1=j  and thus from table 1(a),  the control data 
is {2, 0, 1}. This defines how processors fetch 
(a, b) and x signals. Figure 3 shows the retimed 
schedule and depicts the fetching route for this 
example. 

These control signals can be applied 
directly to the multiplexers shown in Figure 2 
and thus it is very easy to change these signals 
to suit different array dimensions and cell 
latencies. When coupled with processor cells 
implemented using parameterized IP cores 
[6,7] (e.g. parameterized arithmetic processors) 
this provides a very elegant and direct 
approach to the creation of a generic core for 
implementing QR array processor systems in 
silicon. Typical parameters include the number 
of input values x, data wordlengths and levels 
of pipelining used within specific arithmetic 
building blocks. 

3. DISCUSSION  

Using the generic scheduling methods 
described, a parameterized QR core for 
adaptive beamforming has been captured in a 
hierarchical fashion using VHDL [7]. The 
operation of this core has been verified over a 
wide range of parameters and shown to be 

suitable for creating and synthesizing silicon 
QR systems covering all practical array 
dimensions and wordlengths and processing 
cell latencies.  For example, based on 0.35 
CMOS triple-layer technology, studies show 
that 60 complex QR cells, using 12bit 
wordlengths, can fit onto a single chip. (The 
corresponding number is 35 cells for the 16-bit 
case). This allows such systems to be rapidly 
created and the system to be rapidly redesigned 
for different application specifications, such as 
adaptive beamforming / noise cancellation for 
radar, sonar and mobile communications. 
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