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ABSTRACT

In this paper, we propose a non-stationary noise reduc-
tion method based on speech state transition model.
Our proposed method estimates the speech signal un-
der non-stationary noisy environments such as musical
background by applying speech state transition model
to Kalman filtering estimation. The speech state tran-
sition model represents the state transition of speech
component in non-stationary noisy speech and is mod-
eled by using Taylor expansion. In this model, the state
transition of noise component is estimated by using lin-
ear predictive estimation. In order to evaluate the pro-
posed method, we carried out large vocabulary con-
tinuous speech recognition experiments under 3 types
of music and compared the results with convention-
ally used Parallel Model Combination(PMC) method
in word accuracy rate. As a result, the proposed method
obtained word accuracy rate superior to PMC.

1. INTRODUCTION

In recent years, many types of speech recognition sys-
tems have been proposed and developed toward the
practical use in the real world. However, most of the
works recognize clean speech collected in quiet environ-
ments. For practical use it is required for recognition
systems to be robust for interfering noises, especially
non-stationary noises.

Robust speech recognition systems are classified into
two types. One adapts itself to any kinds of noises
based on model adaptation techniques[1]-[3]. The other
reduces the noise component from noisy speech based
on noise reduction techniques[4]-[7].

Parallel Model Combination(PMC)[1, 2] has been pro-
posed which adapts the speech recognition system to
any kinds of noises. To improve the recognition ac-
curacy under non-stationary noisy environments, time
varying residual noise compensation method has been

proposed[3]. But model adaptation method has a prob-
lem that it needs a huge quantity of computation, if it is
applied to the acoustic model which has a large number
of phonemes with mixture distributions like a triphone
model HMM.

On the other hand, Spectral Subtraction(SS)[4] has
been proposed as a conventional noise reduction method.
However, SS has a problem that it deteriorates the
recognition rate due to spectral distortion by over or
under subtraction. In addition, subtracted noise spec-
tral is mean spectral estimated from the time section
assumed to be noise (beginning of utterance) and the
SS does not consider the time varying of noise spectral.
In this paper, we propose a non-stationary noise reduc-
tion method based on speech state transition model.
The method estimates the speech signal under non-
stationary noisy environments by applying speech state
transition model to Kalman filtering estimation. In or-
der to evaluate the proposed method, we carried out
Large Vocabulary Continuous Speech Recognition
(LVCSR) experiments under non-stationary noisy en-
vironments and compared the results by our method
with those by PMC in word accuracy rate.

2. SPEECH STATE TRANSITION MODEL

At the kth frame, power spectra of clean speech under
noisy environments is represented as follows:

S(k) = exp (X' (k)) — exp (N'(k)) (1)

where X (k), S(k) and N (k) denote the vectors of power
spectra of noisy speech, clean speech and noise at the
kth frame respectively, and superscript [ denotes the
log-spectral domain.

In Eq.(1), speech state transition from S(k) to S(k+1)
is represented as follows:

S(k+1) = S(k)+AS(k)



= exp (X'(k) + AX'(k))
—exp (N'(k) + AN'(R))  (2)

where AX!(k) = XYk + 1) — X! (k) and AN!(k) =
NY(k + 1) — NY(k) respectively.

Here, by expanding Eq.(2) using first order Taylor se-
ries, speech state transition can be linearized as follows:

Sk+1) ~ Sk)+ 85,((’2) X’(k)+§]€f(]2)AN’(k)
= S(k)+ X (k)AX'(k) — N(k)AN'(k)
S(k) + (S(k) + N(k)) AX' (k)

—N(k)AN'(k)
= (1+AX k)) S(k)
+N (k) (AX'(k) — AN'(k))
= F.S(k) + GeW (k) 3)
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where Fj, = 1+ AX!(k), Gx = N(k) and W(k) =

AXY(k) — AN'(k) respectively.
In Eq.(3)~(5), 8%}91((12) and 88]\‘?,((’“,3) mean that partial

differentiation applies to each element independently,
under the assumption that each element in the vector
is uncorrelated.

In the above description, we defined Eq.(3) as speech
state transition model and applyed Eq.(3) to Kalman
filtering estimation to estimate speech power spectra
S(k) from noisy power spectra X (k).

3. KALMAN FILTERING ESTIMATION

3.1. THE STATE SPACE MODEL

To estimate the S(k) by using Kalman filtering estima-
tion, we determined the state space model as follows:

S(k+1) = FS(k) + G W (k) 6)

X (k) = S(k) + N (k) (7)

In above equations, Eq.(6) corresponds to state equa-
tion, and Eq.(7) corresponds to observation equation.

3.2. KALMAN FILTERING ALGORITHM

By using the state space model described in 3.1, Kalman
filtering algorithm is obtained as follows:

S(k) = Fe_1S(k — 1) + K (X (k) — Fee1 Sk — 1)) (8)

Kp = Qr [Qr + EN(k)]_l 9)

Foo1(I — Kj_1)Qr_1 FE |
+Gr 12w (k-1)Gk 4 (10)

where S(k) denotes the estimation of S(k) and Q, de-
notes diagonal co-variance matrix of the estimating er-
ror respectively.

The initial values for Eq.(8)~(10) are represented as
follows:

Qr =

~

50)=0 (11)

Qo=0 (12)

In Eq.(10), Xy (k) denotes diagonal co-variance matrix
of W(k). Zw) is computed by the following equa-
tion under the assumption that W (k) follows zero mean
Gaussian process.

Swky = W (k)W (k)" (13)

On the other hands, in Eq.(9), ¥n() denotes diago-
nal co-variance matrix of N(k). Y is computed by
the following equation under the assumption that N (k)
follows zero mean Gaussian process as well as W (k).

Sy = NE)N(E)T (14)
3.3. LINEAR PREDICTIVE ESTIMATION
FOR N (k)

To compute the Yy and Xy (r), the value of N (k)
is required. However, observable value is only X (k).
Therefore, we have to estimate the value of N(k) by
using pth order linear prediction expressed as follows:

Xj(k) 0<k<p
Za” k—1)

where j denotes the channel number in FFT analy-
sis and a;; denotes the linear predictive coeflicient at
channel j.

In Eq.(15), when 0 < k < p, N;(k) is obtained by
N;(k) = X;(k) under the assumption that the time
section 0 < k < p exists where only the noise compo-
nent is included as at the beginning of utterance and
when k > p, N;(k) is estimated by the linear predic-
tive estimation. In this paper, the number of linear
predictive coefficient p was set to 12.

Nj(k) = (15)

k>p



4. EXPERIMENTS

LVCSR experiments were carried out for the speech
signals estimated by the proposed method. As a com-
parison, LVCSR by PMC was also carried out.

4.1. EXPERIMENTAL CONDITIONS

The experimental materials are 100 sentences spoken
by 23 Japanese males. These materials are taken from
the TPA (Information-technology Promotion Agency,
Japan)-98-TestSet. The noises are non-stationary mu-
sic of 3 piano solos(Piano 1, Piano 2 and Piano 3).
They are added to clean speech signal by a computer
as shown in Eq.(16), changing the SNR at 3 levels; 0dB,
10dB and 20dB.
Pow,

.Z'(t) = s(t) + —IOSNR/NPO’UJ"

where z(t), s(t) and n(t) are noisy speech, clean speech
and noise respectively. Pows and Pow,, are RMS power
of clean speech and RMS power of noise respectively.
We carried out LVCSR using speaker independent mono-
phone HMMs. Their structure is composed of 5 states
with 3 loops and 12 mixtures for each state. They were
trained using 21,782 sentences spoken by 137 Japanese
males. These speech data was taken from the database
of Acoustical Society of Japan. The feature parameters
are 39 MFCCs with 12 MFCCs, log energy and their
first and second order derivatives. Cepstral Mean Nor-
malization(CMN) is applied to each sentence to remove
the difference of input circumstances.

For noise HMM used in PMC, the HMM structure is 3
states with 1 loop and 1 mixture for each state. Table
1, 2 and 3 summarize the experimental conditions for
acoustic analysis, phoneme HMM and noise HMM.
Here, MFCC as feature parameters for LVCSR was
not computed from the wave form reconstructed from
power spectra of the speech estimated by the proposed
method, but it was computed directly from estimated
power spectra by using Mel Filter Bank and DCT.
Then CMN is applied to each sentence as well as the
training data.

n(t) (16)

Table 1: Acoustic analysis conditions

16kHz
1-0.97271

Sampling frequency
Pre-emphasis

Feature parameter
(Noise reduction)
Feature parameter
(Recognition)
Analysis frame length
Analysis frame shift
Analysis window

FFT spectra(512th order)

MFCC(12th order) +
Log-Power + A + AA
20ms

10ms

Hamming window

Table 2: Structure of phoneme HMM

Number of states 5
Number of loops 3
Number of mixtures 12
Number of phonemes 41
Type Left to right HMM

Table 3: Structure of noise HMM

Number of states 3
Number of loops 1
Number of mixtures 1
Type Left to right HMM

A language model is bigram for the 1st-pass in the con-
tinuous speech decoder and trigram for the 2nd-pass.
It was trained using the Mainichi newspaper articles of
75 months. The number of the words in the dictionary
is 20,000.

4.2. EXPERIMENTAL RESULTS

Table 4, 5 and 6 show results of the LVCSR under the
non-stationary 3 types of piano music. In each table,
upper row shows word correct rate(Corr) and lower

row shows word accuracy(Acc). They are defined by
Eq.(17) and Eq.(18).

N-S—-D
Corr(%) = +x100 (17)
N-S—-D-1T

Ace(%) = N

x 100 (18)
The number of substituted words

The number of deleted words

The number of inserted words

2~ 0w

Total number of words

Table 4: Recognition results(Piano 1)(%)
(Upper: Corr, Lower: Acc)

SNR >odB | 20dB | 10dB | 0dB
— | 88.78 | 83.26 | 60.88 | 35.64

No processing "3 17952 | 61.57 | 20.04
88.78 | 81.42 | 60.06 | 37.22

PMC 86.49 | 78.50 | 63.47 | 30.94
88.14 | 85.23 | 75.52 | 50.35

Proposed 85.16 | 81.17 | 67.91 | 36.33




Table 5: Recognition results(Piano 2)(%)
(Upper: Corr, Lower: Acc)

SNR oodB | 20dB | 10dB 0dB

— | 83.78 | 82.69 | 66.01 | 34.43
No processing "9 [ 79.62 | 56.44 | 20.04

88.78 | 80.66 | 67.47 | 38.62

PMC 86.49 | 77.62 | 61.64 | 31.90
88.14 | 82.75 | 71.15 | 46.48
Proposed 85.16 | 78.19 | 62.08 | 31.96

Table 6: Recognition results(Piano 3)(%)
(Upper: Corr, Lower: Acc)

SNR oodB | 20dB | 10dB 0dB

— | 83.78 | 83.45 | 70.13 | 37.54
No processing g6 719 [ 79.45 | 61.95 | 21.81

88.78 | 81.36 | 68.36 | 38.11

PMC 86.49 | 78.38 | 63.35 | 32.53
88.14 | 85.10 | 75.90 | 48.45
Proposed 85.16 | 81.23 | 67.53 | 33.61

In each table, comparing with PMC, the proposed
method showed the significant improvement in Corr
under all the conditions. However, the improvement
in Acc was small under all the conditions. From this
fact, it can be assumed that the word substitution and
deletion has decreased and the word insertion has in-
creased.

From the fact that the word insertion has increased, it
can be assumed that the estimation accuracy of noise
power spectra N (k) was not obtained because linear
prediction error of N;(k) in Eq.(15) was large. In pre-
liminary experiments, we confirmed that if N(k) is
true, the improvement of Acc is significantly large (for
example, Acc is improved up to approximately 78%
from 36.33% for Piano 1 under 0dB noisy environ-
ment.). Therefore, it is necessary to estimate N (k)
as accurate as possible.

In addition, in Eq.(3), we applied the first order Taylor
expansion to Eq.(2). However, the first order Taylor
expansion is rough approximation in accuracy. There-
fore, approximation accuracy should be improved by
using the high order Taylor expansion.

5. CONCLUSIONS

In this paper, we proposed the non-stationary noise re-
duction method based on speech state transition model
and showed the significant improvement in word cor-
rect rate. In future, to improve the word accuracy un-
der any types of non-stationary noisy environments, we

will study accurate estimation method for state transi-
tion of the noise spectra.
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