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ABSTRACT

In this paper, considering the complex case, we ex-
tend some results leading to the popular JADE algo-
rithm to cumulants of any order greater than or equal
to three. We first exhibit a new contrast function
which constitutes a generalization for the underlying
contrast of JADE which thus appears as a particular
case. Then we generalize the link between this new
contrast and a joint-diagonalization criterion of a set
of matrices. Moreover, in the two sources case, we
show that the generalized contrast can be written as
a simple quadratic form whatever the cumulant order.
Finally, some computer simulations illustrate the po-
tential advantage one can take of considering statistics
of different orders for the joint-diagonalization of cu-
mulant matrices.

1. INTRODUCTION

We consider the blind source separation problem which
has found numerous solutions in the past decade. Be-
ginning with the originate works of Hérault and Jut-
ten, see [I] and references therein, who have proposed
an adaptive (on-line) algorithm, two of the most im-
portant contributions are provided by Comon [2] and
Cardoso and Souloumiac [3]. These later solutions
are block (off-line) algorithms which are both closely
related to contrast functions (also simply called con-
trasts). Such contrasts were introduced and defined in
[2] and have recently found a generalization in [4]. The
algorithm presented in [2] is called ICA for “Indepen-
dent Component Analysis” and the one presented in [3]
is called JADE for “Joint Approximate Diagonalization
of Eigen-matrices”.

The JADE’s underlying contrast take into consid-
eration only fourth order cumulants on the contrary
to the ICA’s one which remains available whatever the
order of cumulants is since it is greater than or equal

to three. On the other hand, the fourth order JADE'’s
contrast has also found interesting interpretations in
terms of a joint-diagonalization criteria. It is a joint
diagonalization criterion (maximized w.r.t. a unitary
matrix) of some cumulant matrices sets. These links
are the keys for the derivation of the practical JADE
algorithms.

In this paper, we are mainly interested in general-
izing the underlying contrast of JADE in the complex
case and its link with a joint-diagonalization criterion
involving cumulants of any order greater than or equal
to three. As exemplified in [5] where only real signals
are considered, one can find interest in being able to
choose the cumulants order or in combining statistical
information of different orders.

2. PROBLEM FORMULATION

An observed signal vector x[n] is assumed to follow the
linear model
z[n] = Galn] (1)

where n € Z is the discrete time, a[n] the (N, 1) vector
of N # 2 unobservable complex input signals a;[n],
i € {1,...,N}, called sources, x[n] the (N,1) vector
of observed signals x;[n], i € {1,...,N} and G the
(N, N) square mixing matrix assumed invertible.
Further, the following assumptions are considered

A1. “Independence” The sources a;[n], i € {1,...,N},
are zero-mean, unit power and statistically mutually
independent;

A2. “Stationarity” a;n], i € {1,...,N}, are
random signals stationary up to order under con-
sideration, ie. Vi € {l1,...,N}, the cumulant
Cum [a][n],...,a}[n],a;[n],...,a;[n]] is an independent

R—c terms
function of n, denoted by C%[a;]; moreover for a con-

sidered value of ¢, at most one of the cumulants C%[a;],
i€ {l,...,N},is null

c terms



It is important now to introduce the notion of white
vectors. A vector z[n| of random signals is said to be
(spatially) white if its covariance matrix R, = E[z2T]
where (-)! stands for the conjugate and transpose op-
erator, equals the identity. A classical first transforma-
tion is then defined as a whitening of the observation
vector x[n]. This is done by applying a whitening ma-
trix B in such a way that BG =V where V is a uni-
tary matrix, i.e. vvi=1. Hence, after the whitening
transformation, the new “observed” vector reads

xp[n] = Bzx[n] = Valn] . (2)

The blind source separation problem consists now in
estimating a wnitary matrix H in such a way that the
vector

yln] = Hayfn] (3)
restores one of the different sources on each of its dif-
ferent components.

Because the sources are inobservable and the mix-
ture is unknown, the exact power and order of each
sources can not generally be recovered. It is the rea-
son why the separation is said to be achieved when the
global unitary matrix S defined as

S=HV (4)

can be written

S=DP (5)
where D is an invertible diagonal matrix (here with
unit modulus components) corresponding to arbitrary
phases for the restored sources and P a permutation
matrix corresponding to an arbitrary order of restitu-
tion. According to @), (1) and @) the output vector
can be written as

y[n] = Saln] . (6)

Because of the stationarity assumption, the explicit de-
pendence of sources, observations and outputs vectors
with the discrete time n will be now omitted whenever
no confusion is possible.

Let us define some notations which will be useful
in the following. Let 4 be the set of random vectors
satisfying assumptions A1 and A2. Let U be the set
of unitary matrices. The subset of U of matrices S of
the form (f) is denoted by P and the subset of P of
diagonal matrices is denoted by D. Finally the set of
random vector y[n] built from (@) where a[n] € A and
S € U is denoted by Y,,.

3. CONTRAST FUNCTIONS

3.1. Recalls

Contrast functions correspond to objective functions
for the source separation problem. They depend gen-

erally on the outputs of the separating system and they
have to be maximized to get a separating solution. For
convenience, let us recall the definition given in [4]:

Definition 1 A contrast on Y, is a multivariate map-
ping Z(-) from Y, to the real set which satisfies the
following three requirements:

R1. Vy € Y, VD € D, Z(Dy) = Z(y);

R2. Ya e A, VS €U, I(Sa) <ZI(a);

R3. YVae A, VS €U, Z(Sa)=Z(a) = S eP.

One of the first contrast can be found in [2]. Other ex-
amples of contrasts are given in [4]. On the other hand
a contrast involving both cross-cumulants and auto-
cumulants has been proposed in [3]. It reads

- 2
Y [Cumlyi vl vl (7)

iyi1,ia=1

J(y) =

and is called the JADE’s contrast.

3.2. A generalized contrast

Here we propose a generalization of the above contrast
to cumulants of any order greater than or equal to
three. This is given according to the following propo-
sition

Proposition 1 Let R and ¢ two integers such that
R >3 and 0 < c < R — 2, using the notation

CR,c[yaivj] = Cum[yia y_;'{7y;<17' e ayzccvyichu s ayiR,g]

c terms

R—c—2 terms

(8)

the function

N

Z |CR,c[y7 2 ZH2 (9)

i1, _o=1

jR,c(y) =

s a contrast on Y, i.e. for white vectors y.

Proof.  With S = (S5,;), according to (@), the
multi-linearity of cumulants and the independence of
sources, we have

Crely,iril = D 1Sid*Si o+ Si
4

SZ' . SiR727g C%’H[ag] .

ct+1,8 "

Now because S is a unitary matrix then V/q,/%s,
Yom Sits S0, = Oty,0, Where §;; = 1if i = j and
0 otherwise. Thus

Tnely) =3 (Z |Si,z|4> i ad® 10)
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and because V01, Y, |Si, 0,|* <32, 1Si,.6,> =1, then
we have

Trc(y) < Z ‘CCH aé =Jr.(a) . (11)

It is easily shown that the equality in () holds if and
only if S satisfies ([Bl). Moreover Jgr.(y) is invariant
when the y;(n), i = 1,..., N, are multiplied by a factor
of modulus 1. Thus Jgr,.(y) is a contrast function. <

Hence for R = 4 and ¢ = 1 we have J11(y) = J (y)
which is the JADE’s contrast. All other values of R
and c¢ lead to new contrasts.

3.3. Link with a Joint-diagonalization criterion

In this section the contrast Jr .(y) is linked to a joint-
diagonalization criterion of a set of matrices. Such a
joint-diagonalization criterion is defined according to

Definition 2 Considering a set of M square matri-
ces M(m), m = 1,...,M denoted by M. A joint-
diagonalizer of this set is a unitary matriz that mazi-
mizes the function

D(H,M) = Z(Z\ L > (12)
where

Z HZ ﬂle*nz

ni,n2

n1,ma (M) (13)

Now the equivalence can be stated according to the
following proposition:

Proposition 2 With R > 3, let Cr. be the set of
M = NE=2 matrices
M (iq,... (M; (1, ...

JiR—2) = JiR—2))

defined as

Mi,j(ila"',iR—Q) = CR,C[mviaj] . (14)

Then, if H is a unitary matriz, we have

D(H,Cg,) = Jr,.(Hz) . (15)

Let us notice that this proposition Plis a generalization
of one result in [3] to cumulants of any order greater
than or equal to three.

According to the above proposition, we can now
choose the order of cumulants (greater than or equal
to three) for the joint-diagonalization of matrices. In
particular third order cumulants can be used leading

to the joint-diagonalization of N matrices. However
even if it is sufficient to joint-diagonalize matrices of
cumulants of a given order, one can find interest in
combining cumulants of different orders. In particular
this can lead to algorithms that are more robust w.r.t.
the statistics of sources. For example one can combine
third and fourth order cumulants. If third order (resp.
fourth order) cumulants of the unknown sources vanish
then the other fourth order (resp. third order) ones
can be directly used. In the unfortunate case where
both third and fourth order cumulants of the sources
vanish, then one has to consider cumulants of greater
order. Moreover such combination can be useful for an
independent component analysis goal when one is not
sure that the available data conform the initial model.
Indeed in such a case cross cumulants of all orders have
to be canceled.

Now we show that cumulants of different orders can
be considered altogether. This is given according to the
following proposition:

Proposition 3 Let v1,...,vm be m € N* real non
negative constants with at least one mon zero. Let
S1y-..,Sm be m integers such that 3 < S7 < --- < Sp,
and let c1,...,cm be m integers such that 0 < ¢; <

S; — 2, Vi. Finally, let
Vi Csier = {7 M(in, ... is,—2)}

be m sets of matrices M(-) of S; order cumulants as
defined in proposition[d. Then, if H is a unitary ma-
triz, we have

D(H, U Vi CSi,Ci) = Z/Vi Tsiei (Hz) . (16)

i=1 i=1

Now since it is well-known that a (non zero) non neg-
ative linear combination of contrasts is also a contrast
then the joint-diagonalization of matrices of cumulants
of mixed orders is again a sufficient condition for sepa-
ration.

4. ABOUT THE ALGORITHM

The JADE algorithm is based on Jacobi optimization.
This means that the maximization of the criterion un-
der consideration is realized through a sequence of
plane (or Givens) rotations as initiated in [2]. Each
plane rotation works on a pair of the output vector
y[n] and one “sweep” or iteration consists in process-
ing the outputs through all the N(IN — 1)/2 possible
pairs. Hence the N-dimensional problem is reduced to
N(N —1)/2 problems of dimension 2. One of the main
advantages is that the 2-dimensional problem is sim-
pler and often admits an analytical solution. Thus let



us now consider the only 2-dimensional problem where
a plane rotation has to be determined. In the following,
we parameterize it as

cos# € sin 6
H = < —e sinf  cosf ) '

(17)
For N = 2, it can be observed that Jg.(y) may be
written as the quadratic form

jR,c(y) = U9T,¢ AR,C Ug, ¢ (18)

where uj ; = (cos(20) sin(26) cos(¢) sin(20)sin(¢))
and where Agr . = (AR,ci;) is a (3,3) hermitian ma-
trix. The expression of Ag . is not given here because
of limitation of space.

Hence the values of 6 and ¢ maximizing Jr..(y)
can be now easily found by computing the normal-
ized (unit-norm) eigenvector of Apg . associated with
the largest eigenvalue exactly as in the original JADE
algorithm.

It is important to notice that Jr .(y) follows ex-
actly the same quadratic form (I8]) whatever the cu-
mulant order, in the case of two sources. This is a
remarkable fact which simplify a lot the use of cumu-
lants of different orders in the algorithm. Indeed, let
us consider for example matrices of cumulants of or-
ders S1,...,Sm,, m € N* such that 3 < S < --- < S),.
Then according to (8]

m m
> 7T (y) =ugy Y ViAs,c Uos
=1

i=1

where the 7,;’s are real non-negative constants with at
least one non zero.

Such a generalized algorithm for joint-
diagonalization of cumulant matrices is called eJADE
for “extended JADE” when considering the original
implementation of JADE and adding directly the new
matrices to be joint-diagonalized.

An example of computer simulations is given in
Figlll We use both only third order cumulant matrices
whose corresponding algorithm is denoted eJADE(3),
and third plus fourth order cumulant matrices whose
corresponding algorithm is denoted eJADE(3,4). We
use a signal with parameterized third and fourth-order
cumulants. It is a discrete i.i.d. signal called MS(«)
which takes its values in the set {—1, 0, a} with the
respective probability {14%1 , % , ﬁ} The real
parameter « called “cumulant parameter” is such that
a > 1. Hence for a MS(«) signal a(n), one easily has
E[a] = 0, E[a?] = 1, C3[a] = a—1 and C4[a] = a®>—a—2.
The performances of the algorithms are associated to a
non negative index/measure of performance [5] which

is zero when the separation holds. We have plotted
both the mean and the standard deviation (STD) of
the estimated index (over 500 Monte Carlo runs) as a
function of the cumulant parameter a. With N = 3,
the first two considered sources are MS(«) signals while
the third one is a Gaussian i.i.d. signal and a Gaussian
additive noise is added to the mixture. The mixing ma-
trix is chosen randomly with an uniform law in [—1,1].
The data number is held constant to Ny = 400. The
figure shows that the performances of eJADE(3,4) in
comparison to JADE and eJADE(3) are less subject to
variation w.r.t. the statistics of the sources.
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Figure 1: Mean and STD of the estimated index of
JADE, eJADE(3) and eJADE(3,4) w.r.t. the cumulant
parameter ov. The number of data Ny = 400 and the
noise power P, = 0.02.
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