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ABSTRACT

The paper proposes a method for on-line model selection of
nonstationary time series. The method is based on computation
of the covariance matrix of the data, transformation of the matrix
by Housholder’s tridiagonalization, and application of a cluster-
ing algorithm that can separate the Gerschgorin disks of the trans-
formed covariance matrix into disks that correspond to the signals
and noise, respectively. The method is applied to on-line estima-
tion of the the number of harmonic signals in noise. Simulation
results are presented that show the performance of the proposed
method.

1. INTRODUCTION

In many applications [3] [7] [8], observed data contain harmonic
signals that appear for a short period of time, and then disappear.
They may appear again at some random instant of time, or will re-
main absent for the rest of the observation interval. The amplitude
of these harmonics may not be necessarily constant, and in fact,
frequently it varies with time in an unpredictable way. An impor-
tant signal processing problem in such cases is the determination
of the number of harmonics in the data at every instant of time.

We addresses this problem by using the theory of Gerschgorin
disks. Initially, Gerschgorin disks were used for estimation of
number of sources corrupted by additive white Gaussian noise
[11]. The problem with the method employed in [11] is that it can-
not be used in on-line applications because it is computationally
very demanding. In this paper we propose a scheme that exploits
Gerschgorin disks but it does not require operations that cannot
be implemented on standard DSP chips. Since the information
about the number of harmonic signals is in the covariance matrix
of the most recent data, and in particular, its eigenvalues, the idea
is to determine the sets of values they may take, and based on
these sets, estimate the number of harmonic signals currently in
the data. From linear algebra, it is known that crude estimates of
these sets are provided by the Gerschgorin disks. If these disks
are determined from the original covariance matrix, they are not of
much use because most of them have significant overlaps. How-
ever, if we apply unitary transformation to the covariance matrix,
the disks may shrink and separate and become much more infor-
mative. One such transformation is Housholder’s tridiagonaliza-
tion. Once this transformation is applied to the original covariance
matrix, we can use a standard classification algorithm to separate
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the disks that correspond to signal eigenvalues from those that cor-
respond to noise eigenvalues.

Section 2 provides a review of the theory of Gerschgorin disks.
The following section proposes a transformation of the covariance
matrix of the data that facilitates the estimation of the number of
harmonic signals in the data. The proposed method is outlined
in Section 4. In Section 5 simulation results are provided, and in
Section 6 some final remarks are made.

2. GERSCHGORIN DISKS AND MODEL SELECTION

Gerschgorin theorem ([6], p. 341), [11], [10] states that the eigen-
values of aq � q squared matrixA = (aij)i;j=1;:::;qbelong to
the union ofq disks called Gershgorin disks whose centers and
radii areci = aii andri =

P
j 6=i jaij j, respectively. An addi-

tional property of interest here states that if a collection ofk Ger-
schgorin disks are isolated from the remaining Gerschgorin disks,
there exist exactlyk eigenvalues ofA contained in this collection
([10], pp. 71-72), [11]. This last property is appealing and can be
used for development of techniques for model order determination.
In particular, these techniques would be based on the location of
the Gerschgorin disks associated with the covariance matrix of the
noisy observations. Indeed, if the Gerschgorin disks can be split
into two disjoints sets corresponding to the signal and noise eigen-
values, the number of signal eigenvalues can be estimated easily
from these disks. Unfortunately, the Gerschgorin radii may be
large and the Gerschgorin centers may be clustered together with
the Gerschgorin disks being overlapped in most practical applica-
tions. Several authors have recently proposed to solve the problem
of disks overlapping by transforming the estimated covariance ma-
trix of the observed time series using unitary transformations [1],
[2], [11], [12].

An example of such unitary transformation consists of parti-
tioning the covariance matrixC as

C =

�
C1 c

c
H

cqq

�
(1)

where the subscriptH denotes Hermitian transpose of a matrix. If
the eigendecomposition of the so-called reduced covariance matrix
C1 is denoted byC1 = U1D1U

H
1 , and the unitary matrix

U =

�
U1 0

0
H

1

�
(2)

is applied toC, one obtains the transformed covariance matrix
S = U

H
CU (whose expression is detailed in [11]). Other uni-

tary transformations such as the steering vector transformation [2]



or a transformation based on the concept of sample correlation
coefficient [12] have also been studied. The effect of these uni-
tary transformations is to provide two separate collections of Ger-
schgorin disks. The first collection consists of Gerschgorin disks
with large radii associated with the signal (or source), whereas the
second collection is composed of Gerschgorin disks with small
radii associated with the noise. Moreover, these unitary transfor-
mations require only(q � 1)-dimensional eigendecomposition in-
stead ofq-dimensional eigendecomposition, needed in the stan-
dard approach. Unfortunately, the computational complexity of
all these eigendecompositions prevent them from real time appli-
cations (in particular, the eigenvalues cannot be computed easily
with digital signal processors).

For the estimation of number of sources, several likelihood
and heuristic approaches based on Gerschgorin disks have been
proposed in the literature [11][2]. Most of these approaches con-
sist of comparing an appropriate criterion that depends on Ger-
schgorin radii with a suitable threshold. For instance, some au-
thors have proposed to evaluate the Gerschgorin Disk Estimator
(GDE) criterion

GDE(k) = rk �
D(N)

q � 1

q�1X
i=1

ri (3)

for k = 1; :::; q � 1, whereD(N) is a non-increasing function of
the number of samplesN (between0 and1) and to compare this
criterion to0. The number of sources is then determined ask� 1,
wherek is the first value such thatGDE(k) < 0. The GDE cri-
terion was motivated by noting that Gerschgorin radii associated
with noise are usually smaller thanD(N)

q�1

Pq�1
i=1

ri, which is con-
trary to the radii associated to the sources. The performance of the
GDE criterion has been recently improved by considering a nor-
malized distance based on the radii and centers of the Gerschgorin
disks [2]. However, the thresholdD(N) may be difficult to adjust
in practical applications. In addition, the Gerschgorin disk radii
are not always interesting, since a Gerschgorin disk center remote
from zero may have a small radius and a disk center near zero may
also have a large radius (as noted in [2]).

3. GERSHGORIN DISKS OF COVARIANCE MATRICES
TRANSFORMED BY HOUSEHOLDER

TRIDIAGONALIZATION

The objective in this paper is to develop a scheme for model selec-
tion that is based in Gershgorin disks. To that end, before comput-
ing the Gerschgorin radii of the covariance matrix of the observa-
tions, we propose that first it is transformed by Householder tridi-
agonalization ([6], p. 420). Since the Householder tridiagonaliza-
tion consists of successive unitary transformations, it is important
to note that the eigenvalues of the covariance matrix are not altered
by such transformation. Moreover, the preprocessing of the covari-
ance matrix by the Householder tridiagonalization separates the
noise Gerschgorin disks from the signal Gerschgorin disks, with-
out requiring eigendecompositions. This property is illustrated in
Figures 1 and 2, which show the Gerschgorin disks corresponding
to aq�q covariance matrix of two sinusoids embedded in additive
white Gaussian noise:

xt =

2X
i=1

Ai sin (2�fit) + nt; t = 1; :::; N (4)

with N = 32; q = 8; A1 = A2 = 4:47; f1 = 0:25; f2 = 0:27

(normalized frequencies) andE
�
n
2

t

�
= 1 (same parameters as

in [1]). Figure1 shows that the Gerschgorin disks of the original
covariance matrix are overlapped. The Gerschgorin disks in Figure
2 correspond to the covariance matrix after it was tranformed by
Householder tridiagonalization. The disks are clustered into two
groups, one corresponding to the sinusoids, and the other to the
noise.
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Fig. 1. Gerschgorin disks of the original covariance matrix ofxt.
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Fig. 2. Gerschgorin disks of the transformed covariance matrix of
xt.

Here we also propose to use clustering techniques [5] [9] to
separate the Gerschgorin disks that correspond to noise from those
that correspond to harmonic signals, that is, to estimate the num-
ber of harmonic signals in the observed data without computing
the eigenvalues of the covariance matrix. More precisely, the K-
means/Isodata algorithm [5] [9] is used to form a partition of the
Gerschgorin centers into two classes corresponding to signal and
noise. The Isodata algorithm is an iterative 3 step procedure which
consists of 1) choosing initial centroids, 2) classifying the sam-



ples by assigning them to the class of the closest centroid (this
step requires definition of an appropriate distance, which is here
the Euclidean distance) and, 3) recomputing the centroid as the
average of the samples in each class. The steps 1), 2) and 3) are
repeated as soon as the centroids change. The Isodata algorithm
forms a partition which minimizes the trace of the within scatter
matrix. An advantage of the Isodata algorithm is its computational
simplicity ([9], p. 483), since it converges in a finite number of
iterations. In our application, the two initial centroids are chosen
as the smallest and largest Gerschgorin centers and the algorithm
converges in few iterations. After convergence of the Isodata al-
gorithm, the Gerschgorin disk classes can be either isolated or not.
In the former case, the number of signal and noise eigenvalues are
the numbers of Gerschgorin centers associated with the signal and
noise classes. In the latter case, the eigenvalues which are larger
(resp. smaller) than the centroid of the two classes are attributed
to the signal (resp. to noise). The number of these eigenvalues is
evaluated by using the Sturm sequence property ([6], p. 438). This
property states that the eigenvalues of the leadingr-by-r principal
submatrix of a tridiagonal matrixA strictly separate the eigenval-
ues of the(r + 1)-by-(r + 1) principal submatrix. Such property
can be used to evaluate the number of eigenvalues less than a given
threshold (for more details, see [6], p. 438).

4. A NEW METHOD FOR ESTIMATING THE NUMBER
OF HARMONIC SIGNALS

In a non stationary context, the covariance matrix of the signal that
is embedded in noise at timet is classicaly estimated from the data
samples as follows (see [7])

R(t) =

tX
k=1

�
t�k

zL(k)z
T
L(k) (5)

where� is a forgetting factor,zL(k) = [yk�1; :::; yk�L]
T , andL

is the sliding window length. This paper proposes to estimate the
number of harmonic signals at timet by using the following 4-step
procedure:

� Computation of the covariance matrixR(t),

� Householder tridiagonalization of the covariance matrixR(t),

� Determination of the Gerschgorin centers of the tridiago-
nalizedR(t),

� Assigning the Gerschgorin centers to signal or noise using
the K-means/Isodata algorithm,

� Estimation of the number of signal eigenvalues using the
Sturm sequence property.

In the proposed implementation, the 4-step procedure is re-
peated sequentially for each timet.

5. SIMULATION RESULTS

Many simulations have been performed to illustrate the perfor-
mance of the proposed algorithm.

Example 1 (stationary case): the observed signal is the sum
of two sinusoids corrupted by additive white Gaussian noise:

xt =

2X
i=1

Ai sin (2�fit+ �i) + nt; t = 1; :::; N (6)

whereN = 64; A1 = A2 =

p
20; f1 = 0:2; f2 = 0:2 +

1

N

(normalized frequencies); �1 = 0; �2 =
�
4

. The noise variance
is chosen in order to obtain an appropriate signal to noise ratio

SNR = 10 log
10

a2
i

2�2
= 5dB (same parameters as in [4]). Table

I shows the estimated number of sinusoids obtained with the con-
ventional minimum description length (MDL) criterion, the maxi-
muma posteriori(MAP) algorithm and the Gerschgorin algorithm
(GA) for 100 Monte Carlo runs.

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

MDL 0 0 74 17 3 6

MAP 0 0 99 1 0 0

GA 0 14 86 0 0 0

Table I : Performance Comparison for MDL, MAP and GA
criteria.

The MAP strategy outperforms the Gerschgorin algorithm and
the MDL criterion. The performances of the MDL criterion and
the Gerschgorin algorithm are similar (the main difference is that
the MDL criterion tends to overestimate the orderp whereas the
Gerschgorin algorithm tends to underestimate it). However, it is
important to note that the Gerschgorin algorithm can be readily
implemented in real-time processing, whereas the MAP algorithm
described in [4] cannot.

Example 2 (non-stationary case): The observed signal is con-
structed as follows

xt =

8<
:

A1 sin (2�f1t+ �1) + nt t = 1; :::; 300P
2

i=1
Ai sin (2�fit+ �i) + nt t = 301; :::; 700

A1 sin (2�f1t+ �1) + nt t = 701; :::; 1000

whereA1 = A2 =

p
20; f1 = 0:2; f2 = 0:2+

1

32
; �1 = 0; �2 =

�
4

. The results obtained with the proposed approach are compared
with an on-line order selection algorithm described in [7]. How-
ever, since the Akaike information criterion (AIC) frequently over-
estimates the model order (as noticed in [4]), the AIC has been
replaced by the MDL criterion. Figures3 to 6 compare the es-
timated probabilities of selecting the orderp, obtained with the
on-line MDL criterion [7] and the Gerschgorin algorithm, for dif-
ferent values ofp and different SNR’s (note that there were100 tri-
als for each SNR). The Gerschgorin algorithm clearly outperforms
the MDL criterion, specially forSNR = 15dB, where the MDL
criterion estimates only one sinusoid fort = 301; :::; 700. Many
experiments have shown that the Gerschgorin algorithm continues
to work well provided thatSNR � 5dB.

6. CONCLUSIONS

The paper addressed the problem of on-line determination of the
number of harmonic signals in nonstationary data. A method was
proposed that is based on the locations of the Gerschgorin disks
of the transformed covariance matrix of the data. Once the disks
are located, the K-means/Isodata clustering algorithm is applied
to separate the disks correponding to the signals and noise. The
method was tested on stationary and nonstationary data, and it
showed very promising results.
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Fig. 3. Estimated probabilities (MDL criterion, SNR=20dB).
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Fig. 4. Estimated probabilities (GA, SNR=20dB).

[2] O. Caspary and T. Cecchin, “Detection of the source number
by the Gerschgorin disks,”in Proc EUSIPCO, 2000.

[3] Y. S. Cho, S. B. Kim and E. J. Powers, “Time-varying spec-
tral estimation using AR models with variable forgetting fac-
tors,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. 39, no 6,
pp. 1422-1n426, 1991.

[4] P. Djuric, “A model selection rule for sinusoids in white
Gaussian noise,”IEEE Trans. Sig. Proc., vol. 44, no 7, pp.
1744-1751, 1996.

[5] R. Duda and P. Hart,Pattern Classification and Scene Anal-
ysis, New York: Wiley, 1973.

[6] G. H. Golub and C. F. Van Loan,Matrix computations, Johns
Hopkins University Press, Baltimore, 1983.

[7] S. Goto, M. Nakamura and K. Uosaki, “On-line spectral es-
timation of nonstationary time series based on AR model pa-
rameter estimation and order selection with a forgetting fac-
tor,” IEEE Trans. Sig. Proc., vol. 43, no 6, pp. 1519-1522,
1995.

[8] M. Niedzwiecki, Identification of Time-varying Processes,
New York: Wiley, 2000.

[9] S. Theodoridis and K. Koutroumbas,Pattern Recognition.
Academic Press, 1999.

[10] J. H. Wilkinson,The Algebraic Eigenvalue Problem.Oxford,
UK: Clarendon, 1965.

[11] H. T. Wu, J. F. Yang and F. K. Chen, “Source number estima-
tors using transformes Gerschgorin radii,”IEEE Trans. Sig.
Proc., vol. 43, no 6, pp. 1325-1333, June 1995.

[12] H. T. Wu, “A new Gerschgorin radii based method for source
number detection,”in Proc SP Workshop Stat. Signal Array
Proc., pp. 104-107, 2000.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

es
tim

at
ed

 p
ro

ba
bi

lit
y

p=2

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

es
tim

at
ed

 p
ro

ba
bi

lit
y

p=3

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

es
tim

at
ed

 p
ro

ba
bi

lit
y

p=4

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

es
tim

at
ed

 p
ro

ba
bi

lit
y

p=5

Fig. 5. Estimated probabilities (MDL, SNR=15dB).
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Fig. 6. Estimated probabilities (GA, SNR=15dB).


