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ABSTRACT the disks that correspond to signal eigenvalues from those that cor-
respond to noise eigenvalues.

The paper proposes a method for on-line model selection of  Section 2 provides a review of the theory of Gerschgorin disks.
nonstationary time series. The method is based on computationThe following section proposes a transformation of the covariance
of the covariance matrix of the data, transformation of the matrix matrix of the data that facilitates the estimation of the number of
by Housholder's tridiagonalization, and application of a cluster- harmonic signals in the data. The proposed method is outlined
ing algorithm that can separate the Gerschgorin disks of the transin Section 4. In Section 5 simulation results are provided, and in
formed covariance matrix into disks that correspond to the signalssection 6 some final remarks are made.
and noise, respectively. The method is applied to on-line estima-
tion of the the number of harmonic signals in noise. Simulation
results are presented that show the performance of the proposed

method. Gerschgorin theorem ([6], p. 341), [11], [10] states that the eigen-
values of ag x ¢ squared matrixd = (ai;); ;_, ,belong to

1. INTRODUCTION the__union ofq disks called Gershgorin disks V\{hose centers and
radii arec; = ai; andr; = 37, |ai;j|, respectively. An addi-
tional property of interest here states that if a collectio @er-

2. GERSCHGORIN DISKSAND MODEL SELECTION

In many applications [3] [7] [8], observed data contain harmonic e . L N
signals that appear for a short period of time, and then disappearSChgor'n disks are isolated from the remaining Gerschgorin disks,

They may appear again at some random instant of time, or will re_'there exist exactly eigenv_alues ofA contai_ned in th_is collection
main absent for the rest of the observation interval. The amplitude([lo]* pp. 71-72), [11]. This Ia__c,t property is appealing and can .be
of these harmonics may not be necessarily constant, and in factused fc_>r development of tt_achnlques for model order determlngtlon.
frequently it varies with time in an unpredictable way. An impor- In particular, ”_‘95? technlqu_es wou!d be based_on the Ioc_atlon of
tant signal processing problem in such cases is the determinatiori’® G€rschgorin disks associated with the covariance matrix of the
of the number of harmonics in the data at every instant of time. noisy observations. Indeed, if the Gerschgorin disks can be split

We addresses this problem by using the theory of Gerschgorininto two disjoints sets co_rrespor_lding o the signal and _noise eiger_1-
disks. Initially, Gerschgorin disks were used for estimation of values, the number of signal eigenvalues can be estimated easily

number of sources corrupted by additive white Gaussian noise}‘(;?me tz;]r?dsfhgli(;sc%n?rri;uzgaetle)?strneaGs«;sgm%?enrr;drig“eThiyr \t/)v?th
[11]. The problem with the method employed in [11] is that it can- th gG rschaorin di kgb ina overl >(/jin most practi gl i
not be used in on-line applications because it is computationally € Lserschgo SKS DeIng overiappe ost practical appiica-

very demanding. In this paper we propose a scheme that exploits“ons' Several authors have recently proposed to solve the problem

Gerschgorin disks but it does not require operations that cannotOdeSkS overlapping by transforming the estimated covariance ma-

be implemented on standard DSP chips. Since the informationtr'x of the observed time series using unitary transformations [1],

about the number of harmonic signals is in the covariance matrix[z]'%:]')[(lﬂ' le of h unitary transformation consists of parti
of the most recent data, and in particular, its eigenvalues, the ide éxampie of such unitary transtormation consists ot parti-

is to determine the sets of values they may take, and based oilomng the covariance matrig as

these sets, estimate the number of harmonic signals currently in C, ¢
the data. From linear algebra, it is known that crude estimates of C= < Hoo. ) (1)
these sets are provided by the Gerschgorin disks. If these disks “

are determined from the original covariance matrix, they are not of where the subscrigt denotes Hermitian transpose of a matrix. If
much use because most of them have significant overlaps. Howthe eigendecomposition of the so-called reduced covariance matrix
ever, if we apply unitary transformation to the covariance matrix, ¢, is denoted byC; = U; D; U, and the unitary matrix

the disks may shrink and separate and become much more infor-

mative. One such transformation is Housholder’s tridiagonaliza- U= < Ui 0 ) @

tion. Once this transformation is applied to the original covariance “Lof 1

matrix, we can use a standard classification algorithm to separate ) ) ) )
is applied toC, one obtains the transformed covariance matrix

The work of P. M. Djuré was supported by the National Science Foun- S = U CU (whose expression is detailed in [11]). Other uni-
dation under Award No. CCR-9903120. tary transformations such as the steering vector transformation [2]




or a transformation based on the concept of sample correlationwith N = 32,q = 8, A1 = Ay = 447, fi = 0.25, f» = 0.27
coefficient [12] have also been studied. The effect of these uni- (normalized frequencies) anfl (nf) = 1 (same parameters as
tary transformations is to provide two separate collections of Ger- in [1]). Figurel shows that the Gerschgorin disks of the original
schgorin disks. The first collection consists of Gerschgorin disks covariance matrix are overlapped. The Gerschgorin disks in Figure
with large radii associated with the signal (or source), whereas the2 correspond to the covariance matrix after it was tranformed by
second collection is composed of Gerschgorin disks with small Householder tridiagonalization. The disks are clustered into two
radii associated with the noise. Moreover, these unitary transfor-groups, one corresponding to the sinusoids, and the other to the
mations require onlyg — 1)-dimensional eigendecomposition in-  noise.

stead ofg-dimensional eigendecomposition, needed in the stan-
dard approach. Unfortunately, the computational complexity of
all these eigendecompositions prevent them from real time appli-
cations (in particular, the eigenvalues cannot be computed easily
with digital signal processors).

For the estimation of number of sources, several likelihood
and heuristic approaches based on Gerschgorin disks have beer s
proposed in the literature [11][2]. Most of these approaches con-
sist of comparing an appropriate criterion that depends on Ger-
schgorin radii with a suitable threshold. For instance, some au-
thors have proposed to evaluate the Gerschgorin Disk Estimator
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the number of sampled (betweer) and1) and to compare this
criterion to0. The number of sources is then determined asl,
wherek is the first value such th&&DE (k) < 0. The GDE cri-
terion was motivated by noting that Gerschgorin radii associated
with noise are usually smaller tha-DFqu(_N—l> 97! ri, which is con- -
trary to the radii associated to the sources. The performance of the 2/
GDE criterion has been recently improved by considering a nor-
malized distance based on the radii and centers of the Gerschgorin  *sr
disks [2]. However, the thresholB (V) may be difficult to adjust

in practical applications. In addition, the Gerschgorin disk radii

are not always interesting, since a Gerschgorin disk center remote ‘
from zero may have a small radius and a disk center near zero may  °°f
also have a large radius (as noted in [2]).

3. GERSHGORIN DISKS OF COVARIANCE MATRICES -osf

Fig. 1. Gerschgorin disks of the original covariance matrixpf
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TRANSFORMED BY HOUSEHOL DER
TRIDIAGONALIZATION s

The objective in this paper is to develop a scheme for model selec- .5
tion that is based in Gershgorin disks. To that end, before comput-
ing the Gerschgorin radii of the covariance matrix of the observa- -k s - . . s
tions, we propose that first it is transformed by Householder tridi- Real axs x10°
agonalization ([6], p. 420). Since the Householder tridiagonaliza-
tion consists of successive unitary transformations, it is important Fig. 2. Gerschgorin disks of the transformed covariance matrix of
to note that the eigenvalues of the covariance matrix are not alteredy,.
by such transformation. Moreover, the preprocessing of the covari-
ance matrix by the Householder tridiagonalization separates the  Here we also propose to use clustering techniques [5] [9] to
noise Gerschgorin disks from the signal Gerschgorin disks, with- separate the Gerschgorin disks that correspond to noise from those
out requiring eigendecompositions. This property is illustrated in that correspond to harmonic signals, that is, to estimate the num-
Figures 1 and 2, which show the Gerschgorin disks correspondingper of harmonic signals in the observed data without computing
to ag x g covariance matrix of two sinusoids embedded in additive the eigenvalues of the covariance matrix. More precisely, the K-
white Gaussian noise: means/Isodata algorithm [5] [9] is used to form a partition of the
) Gerschgorin centers into two classes corresponding to signal and
_ s _ _ noise. The Isodata algorithm is an iterative 3 step procedure which
o= ; Aisin (2 fit) + e, t=1..N @ consists of 1) choosing initial centroids, 2) classifying the sam-




ples by assigning them to the class of the closest centroid (thiswhere N = 64, Ay = A> = v/20,f1 = 0.2,f> = 0.2 + %

step requires definition of an appropriate distance, which is here(normalized frequenciegp: = 0,¢> = 7. The noise variance
the Euclidean distance) and, 3) recomputing the centroid as theis chosen in order to obtain an appropriate signal to noise ratio
average of the samples in each class. The steps 1), 2) and 3) arg yp — 101og,, a_22 = 5dB (same parameters as in [4]). Table
repeated as soon as the centroids change. The Isodata algorithighows the estimated number of sinusoids obtained with the con-
forms a partition which minimizes the trace of the within scatter yentional minimum description length (MDL) criterion, the maxi-

matrix. An advantage of the Isodata algorithm is its computational 3y ma posteriori(MAP) algorithm and the Gerschgorin algorithm
simplicity ([9], p. 483), since it converges in a finite number of (GA) for 100 Monte Carlo runs.
iterations. In our application, the two initial centroids are chosen

as the smallest and largest Gerschgorin centers and the algorithm p=0|p=1|p=2|p=3|p=4|p=5>
converges in few iterations. After convergence of the Isodata al-| M DL 0 0 74 17 3 6
gorithm, the Gerschgorin disk classes can be either isolated or not, M AP 0 0 99 1 0 0
In the former case, the number of signal and noise eigenvalues are G A 0 14 86 0 0 0

the numbers of Gerschgorin centers associated with the signal and ]
noise classes. In the latter case, the eigenvalues which are larger Table I Performance Comparison for MDL, MAP and GA
(resp. smaller) than the centroid of the two classes are attributed criteria.

to the signal (resp. to noise). The number of these eigenvalues is . :
evaluated by using the Sturm sequence property ([6], p. 438). This The MAP strategy outperforms the Gerschgorin algorithm and

v states that the ei | fthe lead incinal the MDL criterion. The performances of the MDL criterion and
property states that the eigenvalues of the lea Hog-r principa the Gerschgorin algorithm are similar (the main difference is that
submatrix of a tridiagonal matri¥ strictly separate the eigenval-

ues of the(r + 1)-by-(r + 1) principal submatrix. Such property the MDL criterion tends to overestimate the orgewhereas the

can be used to evaluate the number of eigenvalues less than a givecﬁnerSChgorin algorithm tends to underestimate i). However, it is
threshold (for more details, see [6], p. 438). important to note that the Gerschgorin algorithm can be readily

implemented in real-time processing, whereas the MAP algorithm
described in [4] cannot.

4. ANEW METHOD FOR ESTIMATING THE NUMBER Example 2 (non-stationary case): The observed signal is con-

OF HARMONIC SIGNALS structed as follows

In a non stationary context, the covariance matrix of the signal that Alfin (27rf1t +61) + e t=1,..,300

is embedded in noise at tinhés classicaly estimated fromthe data %t = §  2_i—y Aisin 2w fit + i) +ne ¢ =301, ...,700

samples as follows (see [7]) Avsin (27 fit + ¢1) + ne t =701,...,1000

t whered; = A, =20, f1 = 0.2, fo = 0.2+ % , 01 =0,02 =
R(t) = Z ,\t"“zL(k)zf(k) (5) 7 The results obtained with the proposed approach are compared
k=1 with an on-line order selection algorithm described in [7]. How-

ever, since the Akaike information criterion (AIC) frequently over-

where is a forgetting factorz., (k) = [yx—1, ..., ys—2]", andL estimates the model order (as noticed in [4]), the AIC has been
is the sliding window length. This paper proposes to estimate thereplaced by the MDL criterion. Figurelto 6 compare the es-
number of harmonic signals at tinn@y using the following 4-step  timated probabilities of selecting the order obtained with the
procedure: on-line MDL criterion [7] and the Gerschgorin algorithm, for dif-
ferent values op and different SNR’s (note that there we@ tri-
L o ) als for each SNR). The Gerschgorin algorithm clearly outperforms
e Householder tridiagonalization of the covariance ma{x), the MDL criterion, specially foSNR = 15dB, where the MDL
e Determination of the Gerschgorin centers of the tridiago- criterion estimates only one sinusoid fioe= 301, ..., 700. Many

nalizedR(t), experiments have shown that the Gerschgorin algorithm continues
to work well provided thaSNR > 5dB.

e Computation of the covariance matdt),

e Assigning the Gerschgorin centers to signal or noise using
the K-means/Isodata algorithm,

e Estimation of the number of signal eigenvalues using the 6. CONCLUSIONS

Sturm sequence property. The paper addressed the problem of on-line determination of the

In the proposed implementation, the 4-step procedure is re-number of harmonic signals in nonstationary data. A method was
peated sequentially for each time proposed that is based on the locations of the Gerschgorin disks
of the transformed covariance matrix of the data. Once the disks
are located, the K-means/Isodata clustering algorithm is applied
to separate the disks correponding to the signals and noise. The
method was tested on stationary and nonstationary data, and it
showed very promising results.

5. SIMULATION RESULTS

Many simulations have been performed to illustrate the perfor-
mance of the proposed algorithm.

Example 1 (stationary case): the observed signal is the sum
of two sinusoids corrupted by additive white Gaussian noise: 7. REFERENCES
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Fig. 3. Estimated probabilities (MDL criterion, SNR=20dB).
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Fig. 5. Estimated probabilities (MDL, SNR=15dB).
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Fig. 6. Estimated probabilities (GA, SNR=15dB).



