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ABSTRACT

We considerthe problemof convolutive blind signalsep-
arationthroughthe optimizationof contrastfunctions. In
this work, we show thatsomelinks betweencontrastsand
joint diagonalizationcriteria can be exhibited in the con-
volutive case. This allows to devise a constructive algo-
rithm performingMIMO blind equalization,with the help
of a joint approximatediagonalizationof a setof matrices
built from the observations. This analyticalalgorithmcan
be run block-wise,which is appropriatein the context of
shortburstcommunications.

1. INTRODUCTION

We considerthe problemof blind equalization,or decon-
volution, of Linear Time Invariant (LTI) Multiple-Input
Multiple-Output(MIMO) systems.Suchaproblemis of in-
terestin multi-userwirelesscommunications,whereMIMO
systemsareexpectedto equalizetheobservedsignalsboth
in spaceandtime. In fact,MIMO equalizationaimsatelim-
inatinginter-symbolinterferencesdueto possibledelaysin-
troducedby multi-pathspropagation,andco-channelinter-
ferencesdueto thepossiblepresenceof simultaneoususers
in the sameband. Examplesarefound in SpaceDivision
Multiple Access(SDMA) or CodeDivision Multiple Ac-
cess(CDMA) communicationssystems.

Otherwell-known fieldsof applicationarethosewhere
the genericproblemarises;this includesarrayprocessing,
passive sonar, seismicexploration, speechprocessing,in-
terception,surveillance...

One can find numerousworks on blind equalization
of Single-InputSingle-Output(SISO)channelsusinghigh-
orderstatistics[2] [11], or constantmodulus[17] [9] or con-
stantpower[8] properties,whereasthemultichannelframe-
work,althoughmorerecent,alreadyseemsto bemorepow-
erful; numerousreferencesinclude[12] [1] [3] [6] [13]. A
particularinstanceof the problemis thestaticmixture,of-
tenreferredto asthe“sourceseparation”problem,whereno

inter-symbolinterferenceis consideredbut only co-channel
interference[5] [4]. Thelatterproblemis relevantwhenthe
timedelaysaresmallerthanthesymbolperiod,for example.

Blind MIMO deconvolution can be carried out with
thehelpof on-line iterative algorithms[15], someof them
extracting one sourceat a time (deflation) [16]. How-
ever, blockmethodsbecomemoreandmoreattractivesince
computerpower no longer appearsto be an impediment.
The useof block (off-line) algorithmspresentsa number
of advantagesincluding: great improvementon the con-
vergencetime (both estimationof statisticsandoptimiza-
tion), increasedfacility to handlespuriouslocal extrema,
betterrobustnessto loss of synchronization,possibility to
work jointly with the reversed-timesignal,naturalformat-
ting for TDMA transmission,especiallyshortburstslike in
theGSMstandard[7]. Ontheotherhand,adaptive(on-line)
algorithmscanalsobenefitfrom of blockupdates,andgain
in convergencespeedandcomplexity [10].

In this paper, our goal is to relateblind MIMO decon-
volutionto joint matrixdiagonalization,yieldingaconstruc-
tiveblockalgorithm.Weconsidertheproblemof estimating
aninverseof theimpulseresponseof aLTI MIMO channel,
given only outputmeasurements.Indeed,we estimatean
equivalentmultivariateMoving Averagechannelregardless
of whattheactualchannelis. Ourapproachreliesoninverse
filter criteriabasedonhigh-orderstatistics.

2. PROBLEM FORMULATION

We considerthe invertible multichannelLTI systemde-
scribedby
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where ������� is the � � dimensionalvectorof sources,�������
is the � � dimensionalvectorof observationsand � ��� def�� � �����! "�$# ZZ

�
is asequenceof �&%'� matricesthatcorre-

spondsto theimpulseresponseof theLTI mixing filter. The



multichannelblind deconvolution problemconsistsof esti-

matingaLTI filter (equalizer)�
( � def� �)( �����! "�$# ZZ
�

us-
ing only theoutputs������� of theunknownLTI system� ��� .�)( � ensuresthefact thatvector * ����� definedas
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restoresthe � input signals.0/ ����� , 1 # �32  5454647 � � . We de-

finetheglobalLTI filter �08 � def� �98 �����: ;��# ZZ
�

asfollows
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�
��� 	 8
�����7A �D� standsfor the �&%'� trans-

fer matrixand A �FE thebackward-shiftoperator.
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is thechannel,( theequalizer, and 8
theglobalsystem.

Assumptions. The following propertiesare assumed
throughoutthepaper:

A1. The sources. / ����� , 1 # �32  5454647 � � , are mutually
statisticallyindependent.Eachsourceis a sequence
of zero-meanandunit power independentandidenti-
cally distributed(i.i.d.) realrandomvariables.

A2. ������� is a randomprocessstationaryup to theconsid-
eredorder G # IN H , i.e. IJ1 # �32  645454� � � , thecumu-
lant KML9N = .9/ �����: 546454; .9/ �����O P6Q RS times

B is independentof � , and

canbedenotedcompactlyK S = .9/ B .
A3. At most one of the consideredsourcecumulantsis

zero.

A4. Thetransfermatrix ?8 ��A0� satisfies?8 ��A9�9?8UT � 25V A H �+�W
where

W
is the �X%Y� identity matrix. In other

words,thematrix ?8 ��A0� is para-unitary.

The assumptionA4, althoughstrongerthanthat of [6]
for Z �\[ , canbesatisfiedafterasecondorderprewhitening
of the observations,followedby a spatialstandardization.
Thosetwo operationscan be carriedout with the help of
classicalalgorithms,suchasspectralminimum phasefac-
torizationandPrincipalComponentAnalysis.

Indeterminations. Sincesourcesareassumedto beunob-
servable,someinherentindeterminationsin their restitution
subsist:in mostcases,theorderaswell asthepowerandthe
time delaycannotbe identified. Actually, theselimitations
combinetheinherentindeterminationsof thesourcesepara-
tion problemtogetherwith thoseof theclassicalblind scalar
deconvolution problem.Hence,signalsaresaidto besepa-
ratedif andonly if (if f) theglobalLTI system ?8 ��A9� reads?8 ��A0�+�^]_��A9�a`cb (4)

where]d��A9�+�degfih
jk��A �k�
l  546454; "A �D�6m � with �6no# ZZ p , 2rqs qt� , ` is an invertibleconstantdiagonalmatrix and b
a permutationmatrix. Notethat,because?8 ��A0� satisfies(4)
andA4, theentriesof ` areof unit modulus.

Notations. Let us definesomeusefulnotations.The set
of matrixsequencessatisfyingassumptionA4 is denotedbyu

. Thesetof sourcerandomvectorssatisfyingassumptions
A1 to A4 is representedby v . Thesubsetof

u
of matrixse-

quencessuchthat(4) is satisfied,oftenreferredto astrivial
filters, is denotedby w . Finally, thesetof randomvectors* ����� satisfying(3) where �x# v and �08 � # u is denoted
by y .

3. CONTRAST FUNCTIONS

3.1. New Contrast functions

First we generalizesomecontrastsavailable in the instan-
taneouscaseto the convolutive one. With this goal, let us
introducethefollowing notation

K�z{9| S = 1  @}J @~6B��K�L0N =�� / �����: 546454; "� / �����O P5Q R{��i�a���M�  "� n l ���c��� E �! 645454" ;� n;� ���<�����5�O P5Q R� � S � {r�i�a�i��� B
(5)

whereG � Z��Y� standsfor thecumulantorderand} � � s E  645454" s �6�~ � ��� E  546454� @�:�6�,4
Let us also considerthe following set of indices: � ���2  546454� � � � andthe setof delays � � ZZ

�
. We have the

followingfirst result:

Proposition 1 Let G , Z and � be three integerssuch thatG���� , [ q�Z�qdG and � � G � Z , thefunction

� {9| S � * �+� p
 / ��E 
� �
� 
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�

(6)

is a contrastfor 2ndorderstandardizedwhiteobservations* ������# y .



Proof. It is easilyseenthat for a givenorder G of cu-
mulants,we have

� {0| S � * � q � � | S � * � . Now recallingthat� � | S � * � is a contrast[14], then
� � | S � * � q � � | S ����� . Be-

causethesourcesarei.i.d. statisticallyindependentsignals,
all their cross-cumulantsarezeroand

� {9| S ���F��� � � | S ����� .
Thenconsideringthe above resultsaltogether,

� {9| S � * � q� {9| S ����� . Finally, because
� � | S � * � is a contrast,it is notdif-

ficult to seethattheequality
� {9| S � * �+� � {0| S ����� holdsonly

for separatingstates.Thus
� {0| S � * � is a contrast. �

Now onecanevennoticethat thefunction
� {9| S � * � can

alwaysbewrittenas� {9| S � * �+�Y  S � * � �Y¡ {9| S � * � (7)

where   S � * ��� p
 / ��E �� K S =�� / B ��
�

(8)

and ¡ {0| S � * � def� p
 / ��E 
� �
��¢ 
� �0�!£
�� K z{9| S = 1  a}F @~6B ��
� 4 (9)

In the above definition, the sets �5¤ and � H are de-
fined respectively as �5¤ � �&¥¦�
§ with �
§ �� � 2  546454� 2 �! 645464; 5� �  546454; � � � and � H � ZZ

� ¥�� ��¨� 546454; "¨9� � .
Let us remarkthat the function   S � * � involvesonly auto-
cumulantsand was proved to be a contrastin [6]. On
the contrary, the function ¡ {9| S � * � involves only cross-
cumulantsandthusis zerowhenconsideringthesourcevec-
tor, i.e. ¡ {9| S �������©¨ . Basedon the above remarkwe can
proposethefollowing result:

Proposition 2 Let G , Z and � be three integers such thatGr�d� , [ q-Z�q�G and � � G � Z , with ª�q«2 thefunction� {9| S7| ¬ � * ���Y  S � * � �_ª�¡ {0| S � * � (10)

is a contrastfor 2ndorder standardizedwhiteobservations* �����,# y .

Proof. Theproof followsthesamelinesastheonefor
proposition1. Briefly, becauseª­q®2 then

� {9| S7| ¬ � * � q� {9| S � * � . Now according to proposition 1
� {9| S � * � q� {9| S ����� . Moreover

� {0| S7| ¬ �����¯� � {9| S �����¯�   S ����� .
Thenconsideringtheabove resultsaltogether,

� {9| S7| ¬ � * � q� {9| S�| ¬ ���M� . Finally, because
� {0| S � * � is a contrast,it is not

difficult to seethattheequality
� {9| S7| ¬ � * �M� � {9| S7| ¬ ����� holds

only for separatingstates.Thus
� {9| S7| ¬ � * � is a contrast. �

3.2. Link with a joint diagonalization criterion

From now on, we take Z �°[ ; this will be justifiedby the
propositionbelow. Assumethat theMIMO equalizer�
( �

is of finite length ± . Then,for all 1 , 2'qd1�qd� :

� / �������³² �FE
´ ��µ p
¶ ��E¸· / ¶ ��¹���º ¶ ������¹�� (11)

Next, denotethe G � th order cumulant multi-correlation
functionof � as»

¼�| ½ ��¾¿ @ÀÁ�+� K�L9N =�º ¶ l ���<�Â¹ E �! º ¶:Ã ���<�Y¹ � �: �º�Ä l ���<�-Å E �: 546454; "º�Ä � �����ÆÅ��)�CB (12)

where � and ¾ arevectorsof size Z �¦[ , and Ç and À are
vectorsof size � � G �&[ . For every fixed valueof . � ,Ç , ¹ � , and À , the cumulanttensor

»
¼�| ½ ��¾¿ @ÀÁ� is a �È%�±

matrix with indices . E and ¹ E , and can thusbe storedin
a vector of size �É± . The sameremarkholds for indices. � and ¹ � whenotherindicesarefixed. As a consequence,
when the vector indices Ç and À are fixed, the cumulant
tensor

»
¼�| ½ ��¾¿ @ÀÁ� canbestoredin a �É±Â%U�É± matrix that

can be denotedÊ � Ç  aËÌ� . Then,with thesenotations,we
have thefollowing result:

Proposition 3 Thecontrast
� � | S � * � canbewrittenasa cri-

terionof joint diagonalizationof a setof � � ± � matrices:� � | S � * �+� 
 ½ 
 ÍÏÎÐÎ Ñ�Ò�Ó�Ô �:Õ×Ö,Ê � Ç  aËÌ� Õ � ÎØÎ � (13)

where Ç and Ë are vectorscontaining � � G ��[ indices,
varyingin �32  545464; � � and � ¨� 546454; ± � 2 � , respectively, andÕ is semi-unitary.

Proof. Fist, replacein thedefinition(6) of
� � | S � * � the

cumulantsof * by their expressionasafunctionof thoseof� :

K z{9| � = 1  @}J @~5BJ� 
 ¼�| ½ 
 Ù�| Ú · / ¶ l ��¹ E � · / ¶:Ã ��¹ � � · / Ä l �iÅ E ��45464
· / Ä � �iÅ��
��Û ¼�|a½ ��¾¿ aÀ � ~3� (14)

Yet, the para-unitarycondition A4 on ?8 ��A0� implies thatÜ ( ��A9� is alsopara-unitary, which itself yields
 n�Ý · n S ��Þ � �6� · n S"ß ��Þ�à � �!���dá S7S"ß á6â:â ß
Thus,takingthesquareof (14),makingthechangeof vari-
ables ã � �°Å � � � � , andeliminatingthe unusefulindices
leadsto� � | S � * ��� 
/ ¼9¼ ß Ù�Ù ß ½;½ ß Í�Í ß· / ¶ l ��¹ E � · / ¶ Ã ��¹ � � · / ¶ ß l ��¹ à E � · / ¶ ßÃ ��¹ à � �ä Û ¼�| ½ ��¾¿ @Ë�� ä Û ¼�ßØ| ½ ß ��¾ à  @Ë à �� 



whichcanberearrangedinto� � | S � * �9� 
 / ½7Í ��

 ¼0Ù · / ¶ l ��¹ E � · / ¶ Ã ��¹ � � ä Û ¼�| ½ ��¾� @ËÌ� ��

� 4
Lastly, groupingindices . n and ¹ n togetherin a singlein-
dex å n , one can remark that the ± matrices ( ��¹�� can
be stored in a �æ±ç%&� matrix, Õ , so that eventually� � | S � * �Æ�éè / ½7Í Î èxê l ê Ã Õ ê l / Õ ê Ã / � ê l ê Ã � Ç  aË+� Î � . Here
thepara-unitarypropertyof ( ��Þ�� impliesthat Õ Ö Õ � W p .�
3.3. Results in the complex case

For thesakeof simplicity, ourderivationshave beencarried
out in thecaseof realinputandchannel.However, it canbe
seenthattheabove threepropositionscanbegeneralizedto
thecomplex caseof sourcesandmixtures.More precisely,
the output cumulantin (5) can be definedwith any num-
ber of complex conjugates,which imposesthe useof two
additionalindicesandcomplicatesthe notation,henceour
presentationin the real case. The only restrictionis then
thatat mostonesuchsourcecumulantmay benull. Next,
for Z �^[ , lookatthefirst two termsin thecumulant(5), i.e.,
the two termswith the sameindex. If only oneof themis
conjugated,thenonehasto replacethetranspositionin (13)
by theHermitiantransposition.Otherwise,if bothtermsare
(or arenot)conjugated,thetranspositionstaysasis in (13).

4. CONCLUSION

Theframework of contrastfunctionsis now well established
andof recognizedinterest.Contrastsarewidely utilized in
staticBlind SourceSeparation,but muchlessin Dynamic
BSS. On the other hand, in TDMA communications(as
GSM), it is necessaryto equalizethechannelfrom a single
burst, that is, lessthan200symbols.Block methods,long
discardedbecauseof their high computationalcomplexity,
now hold appeal,andshow a betterefficiency onshortdata
lengths.

Thesestatementsargue in favor of the proposedalgo-
rithm, which solvesthe MIMO equalizationproblemwith
the help of Joint ApproximateDiagonalization(JAD) of
several matrices. Issuescurrently under investigationin-
cludetherobustnesswith respectto Gaussiannoiseandto
channelordermisdetection,andthebehavior with random
specularchannelsdrawn accordingto theClarkemodel.
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