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ABSTRACT

A new approach is presented for the dual veri�cation of speaker
identity and verbal content in a text-dependent voice authenti-
cation system. The application considered is desktop voice login
over a far-�eld microphone. Each speaker is allowed to select his
or her own keyphrase, and enrollment is limited to four instances
of the keyphrase, each 1 to 2 seconds of speech. The approach
decouples the analysis of speaker and verbal content informa-
tion, so as to use two light-weight components for veri�cation:
a spectral matching component based on a global representation
of the entire utterance, and a temporal alignment component
based on more conventional frame-level information. The result-
ing integration is language-independent, and experiments with
deliberate imposture show an equal error rate �gure of approx-
imately 4%. The approach has been commercially deployed in
the \VoicePrint Password" feature of MacOS 9.

1. INTRODUCTION

Voice authentication refers to the process of accepting or
rejecting the identity claim of a speaker on the basis of in-
dividual information present in the speech waveform [1]. It
has received increasing attention over the past two decades,
as a convenient, user-friendly way of replacing (or supple-
menting) standard password-type matching [2]. In this pa-
per, we will focus on a desktop login application, where
access to a personal computer can be granted or denied on
the basis of the user's identity. In that context, the au-
thentication system must be kept as unintrusive as possi-
ble, which typically entails the use of a far-�eld microphone
(e.g., mounted on the monitor) and a very small amount of
enrollment data (5 to 10 seconds of speech).

The scenario of choice for desktop voice login is text-
dependent veri�cation, which is logistically closest to that
of a typed password. Each registered speaker is asked to
select a keyphrase of his or her own choosing, and then
use that keyphrase in both training and recognition tri-
als. Assuming the user maintains the con�dentiality of the
keyphrase, this o�ers the possibility of verifying the spoken
keyphrase in addition to the speaker identity, thus result-
ing in an additional layer of security. Hence the interest in
authentication methods which can concurrently verify both
speaker characteristics and verbal content (cf. [3]).

This scenario entails the comparison of the acoustic se-
quence uttered during recognition (veri�cation utterance)
with the aggregated acoustic evidence collected during train-

ing (keyphrase-speci�c reference speaker model). This is
typically done using HMM technology with Gaussian mix-
ture distributions (see, e.g., [4], [5]). Conceptually, the ver-
i�cation utterance is aligned against the appropriate sub-
word HMMs constructed from the relevant reference speaker
model, and the likelihood of the input speech matching
the reference model is calculated. If this likelihood is high
enough, the speaker is accepted as claimed. This approach
faces scarce data problems, however, when enrollment is
severely limited, as is the case here. Variance estimation is
of particular concern, as the underlying Gaussian mixture
distributions run the risk of being too sharp and over�tting
the training data [6].

This paper proposes an alternative solution, loosely based
on a divide and conquer strategy. Rather than using a sin-
gle paradigm to verify both speaker and verbal content si-
multaneously, we attempt to decouple the two and adopt a
di�erent (light-weight) algorithm for each of them: one pri-
marily for global spectral content matching, and the other
mostly for local temporal alignment.

For global spectral content matching, we rely on an
utterance-level representation obtained by integrating out
frame-level information through the use of singular value
decomposition (SVD). With this new representation, it is
possible to relate the veri�cation evidence and reference
model through a simple linear transformation. Then the
speaker veri�cation problem becomes a matter of comput-
ing the appropriate distance between these two entities. To
this end, we derive and adopt a new metric which arises
naturally from the SVD framework.

For temporal alignment, we use simple dynamic time-
warping (DTW). Although HMMs can more eÆciently model
statistical variation in spectral features, here DTW is suÆ-
cient, because the SVD approach already takes care of spec-
tral matching, and therefore the requirements on DTW are
less stringent than is usually the case. The overall system,
combining both SVD and DTW components, is language-
independent. Each component computes a separate likeli-
hood score for how well the input speech matches the ref-
erence model. The accept/reject decision is then based on
the combination of these two scores.

The paper is organized as follows. The next section
brie
y reviews feature extraction, which is common to the
two components. Section 3 describes the SVD framework



and associated metric. In Section 4, we discuss integra-
tion with the DTW component. Finally, Section 5 reports
experimental results illustrating the resulting bene�ts.

2. FEATURE EXTRACTION

We extract spectral feature vectors every 10ms, using short-
term FFT followed by �lter bank analysis to ensure a smooth
spectral envelope. (This is important to provide a stable
representation from one repetition to another of a particular
speaker's utterance.) To represent the spectral dynamics,
we also extract, for every frame, the delta and delta-delta
parameters. After concatenation, we therefore end up with
a sequence of M feature vectors (frames) of dimension N ,
where, for a typical utterance, M � 200 and N � 40. This
sequence is the input to both the SVD component and the
DTW component of the proposed method.

3. SVD FRAMEWORK

From the above, each utterance is represented by a M �N

matrix of frames, say F , where each row represents the spec-
tral information for a frame and each column represents a
particular spectral band over time. We can therefore com-
pute the SVD of the matrix F , as [7]:

F = U S V
T
; (1)

where U is the (M�R) left singular matrix, S is the (R�R)
diagonal matrix of singular values, V is the (N � R) right
singular matrix, R < min(M;N) is the order of the de-
composition, and T denotes matrix transposition. As is
well known, both U and V are column-orthonormal, i.e.,
U TU = V TV = IR, the identity matrix of order R. For
reasons to become clear shortly, we refer to (1) as the de-
composition of the utterance into single-utterance singular
elements U , S, and V .

Such whole utterance representation has been consid-
ered before: see, e.g., [8]. The resulting parameteriza-
tion can be loosely interpreted as conceptually analogous to
the Gaussian mixture parameterization in the HMM frame-
work. The main di�erence is that the Gaussian mixture
approach is implicitly based on a sub-word unit (such as
a phoneme), whereas the SVD approach operates on the
entire utterance, which introduces more smoothing.

It is intuitively reasonable to postulate that some of
the singular elements will re
ect more speaker information
and some others more verbal content information. But it is
not completely clear exactly which re
ects what. In [8], a
case was made that speaker information is mostly contained
in V . Speaker veri�cation was then performed using the
Euclidean distance after projection onto the \speaker sub-
space" de�ned by V , on the theory that in that subspace ut-
terances from the true speaker have greater measure. This
is illustrated in Fig. 1, top �gure. In that interpretation,
each row of V T can be thought of as a basis vector span-
ning the global spectral content of the utterance, and each
row of US represents the degree to which each basis vector
contributes to the corresponding frame.
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Fig. 1. Two Equivalent Views of SVD Decomposition.

But an equally compelling case could be made under the
(dual) assumption that verbal content information is mostly
contained in U . In this situation speaker veri�cation could
conceivably be performed after projection onto the \con-
tent subspace" spanned by U . One would simply compute
distances between reference and veri�cation utterances in
that subspace, on the theory that a large distance between
two utterances with the same verbal content would have to
be attributed to a speaker mismatch. This is illustrated in
Fig. 1, bottom �gure. In that interpretation, each column
of U is a basis vector spanning the verbal content of the
utterance, and each column of SV T represents the degree
to which each basis vector contributes to the corresponding
spectral band.

So, what is the \correct" way to make use of the repre-
sentation (1)? Arguably, the problem is not so much in the
precise interpretation of the singular elements as it is in the
speci�cation of a distance measure perhaps more appropri-
ate than the Euclidean (or Gaussian) distance to evaluate
closeness in this representation. The following justi�es and
adopts a new metric speci�cally tailored to the SVD frame-
work.

Assume, without loss of generality, that (1) is associated
with a particular training utterance, say the jth utterance,
from a given speaker, and consider the set of all training
utterances from that speaker. This set will be represented
by a ~M �N matrix, with ~M � JM , where J is the number
of training utterances for the speaker. Denoting this ~M�N

matrix by ~F , it can be decomposed as:

~F = ~U ~S ~V T
; (2)

with analogous de�nitions and properties as in (1). Ob-
viously, the set of all training utterances contains the jth
utterance, so by selecting the appropriate M rows of ~F , we
can de�ne:

~Fj = F = ~Uj ~S ~V T
; (3)

as the decomposition of the jth utterance into multiple-



utterance singular elements ~Uj , ~S, and ~V . Presumably,
from the increased amount of training data, the matrices
~S and ~V are somewhat more robust versions of S and V ,
while ~Uj relates this more reliable representation (includ-
ing any embedded speaker information) to the original jth
utterance. The equality:

~Uj ~S ~V T = U S V
T
; (4)

follows from (1) and (3). To cast this equation into a more
useful form, we now make use of the (easily shown) fact that
the matrix (V T ~V ) is (both row- and column-) orthornor-
mal. After some algebraic manipulations, we eventually
arrive at the expression:

~S ( ~U T
j

~Uj) ~S = (V T ~V ) T S 2 (V T ~V ) : (5)

Since both sides of (5) are symmetric and positive de�nite,
there exists a (R�R) matrix Djj ~S such that:

D
2

jj ~S = ~S ( ~U T
j

~Uj) ~S : (6)

Note that, while ~U T ~U = IR, in general ~U T
j
~Uj 6= IR. Thus

D 2

jj ~S
is closely related, but not equal, to ~S 2. Only as

the single-utterance decomposition becomes more and more
consistent with the multiple-utterance decomposition does
D 2

jj ~S
converge to ~S 2.

Taking (6) into account and again invoking the orthonor-
mality of (V T ~V ), the equation (5) is seen to admit the
solution:

Djj ~S = (V T ~V ) T S (V T ~V ) : (7)

Thus, the orthornormal matrix (V T ~V ) can be interpreted
as the rotation necessary to map the single-utterance sin-
gular value matrix obtained in (1) onto (an appropriately
transformed version of) the multiple-utterance singular value
matrix obtained in (2). Clearly, as V tends to ~V (meaning
U also tends to ~Uj) the two sides of (7) become closer and
closer to a diagonal matrix, ultimately converging to S = ~S.

This suggests the following metric to evaluate how well
a particular utterance j is consistent with the (multiple-
utterance) speaker model: compute the quantity Djj ~S =

(V T ~V ) TS (V T ~V ), per (7), and measure how much it de-
viates from a diagonal matrix. For example, one way to
measure the deviation from diagonality is to calculate the
Frobenius norm of the o�-diagonal elements of the matrix
Djj ~S .

This further suggests an alternative metric to evaluate
how well a veri�cation utterance, uttered by a speaker `, is
consistent with the (multiple-utterance) model for speaker
k. Indexing the single-utterance elements by `, and the
multiple-utterance elements by k, we de�ne:

D`jk = (V T
` Vk)

T
S` (V

T
` Vk) ; (8)

and again measure the deviation from diagonality of D`jk by
calculating the Frobenius norm of its o�-diagonal elements.
By the same reasoning as before, in this expression the ma-
trix (V T

` Vk) underscores the rotation necessary to map S`
onto (an appropriately transformed version of) Sk. When

V` tends to Vk, D`jk tends to Sk, and the Frobenius norm
tends to zero. Thus, the deviation from diagonality can be
expected to be less when the veri�cation utterance comes
from speaker ` = k then when it comes from a speaker
` 6= k. Clearly, this distance measure is better tailored to
the SVD framework than the usual Euclidean (or Gaus-
sian) distance. It can be veri�ed experimentally that it also
achieves better performance.

The SVD component thus operates as follows. Dur-
ing enrollment, each speaker 1 � k � K to be registered
provides a small number J of training sentences. For each
speaker, the enrollment data is processed as in (2), to obtain
the appropriate right singular matrix Vk. During recogni-
tion, the input utterance is processed as in (1), producing
the quantity S` and V`. Then D`jk is computed as in (8),
and the deviation from diagonality is calculated. If this
measure falls within a given threshold, then the speaker is
accepted as claimed. Otherwise, it is rejected.

4. INTEGRATION WITH DTW

The SVD approach clearly does not take full advantage of
temporal information, since it integrates out frame-level in-
formation. Because of the linear mapping inherent in the
decomposition, it is likely that the singular elements only
encapsulate coarse time variations, and smooth out �ner
behavior. Unfortunately, detecting subtle di�erences in de-
livery is often crucial to thwarting non-casual impostors,
who might use their knowledge of the true user's speech
characteristics to deliberately mimic his or her spectral con-
tent. Thus, a more explicit temporal veri�cation should be
added to the SVD component to increase the level of secu-
rity against such determined impersonators.

We propose a simple DTW approach for this purpose.
Although HMM techniques have generally proven superior,
in the present case the SVD approach already contributes
to spectral matching, so the requirements on any supple-
mentary technique are less severe. As it turns out, DTW
suÆces, in conjunction with the SVD component, to carry
out verbal content veri�cation in our application.

The DTW component implements the classical dynamic
time warping algorithm (cf., e.g., [9]). During training, the
J training utterances provided by each speaker are \av-
eraged" to de�ne a representative reference utterance uR.
This is done by setting the length of uR to the average
length of all J training utterances, and warping each frame
appropriately to come up with the reference frame at that
time. During veri�cation, the input sequence of M feature
vectors of dimension N , say uV , is acquired and compared
to the reference model uR. This is done by aligning the
the time axes of uV and uR, and computing the degree of
similarity between them, accumulated from the beginning
to the end of the utterance on a frame by frame basis. Var-
ious distance measures are adequate to perform this step,
including the usual Gaussian distance. If the degree of sim-
ilarity is high enough, the speaker is accepted as claimed.
Otherwise, it is rejected.

For each veri�cation utterance, two scores are produced:
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Fig. 2. Performance Space of SVD+DTW Approach.

the deviation from diagonality score from the SVD compo-
nent, and the degree of similarity from the DTW compo-
nent. There are therefore several possibilities to combine
the two components. For example, it is possible to combine
the two scores into a single one and base the accept/reject
decision on that single score. Alternatively, one can reach a
separate accept/reject decision for each component and use
a voting scheme to form the �nal decision.

For simplicity, we opted for the latter. Thus, no attempt
is made to introduce conditional behavior in one component
which depends on the direction taken by the other. The
speaker is simply accepted as claimed only if both likelihood
scores are high enough.

5. EXPERIMENTAL RESULTS

Experiments were conducted using a set of 93 speakers, K =
48 true users andK0 = 45 impostors. True users enrolled by
speaking their keyphrase J = 4 times. They also provided
four instances of a voice login attempt, collected on di�erent
days. This resulted in a total of 191 true test utterances,
across which the minimum, average, and maximum sentence
length were 1.2, 1.8, and 3 seconds, respectively.

To increase the severity of the test, each impostor was
dedicated to a particular speaker, and was selected on the
basis of his/her apparent \closeness" to that user, as re-

ected in his/her speech characteristics. For example, to
impersonate a male speaker who grew up in Australia, we
chose another male speaker with an Australian accent. Fur-
ther, each impostor was given access to the original enroll-
ment keyphrases from the true speaker, and was encouraged
to mimic delivery as best as s/he could. This was to re
ect
the high likelihood of deliberate imposture in desktop voice

login, where the true user is typically known to the impos-
tor. (On the other hand, given this application and in view
of Apple's target market, we deemed unnecessary to con-
sider more sophisticated attempts like technical imposture
[10].) Each impostor provided two distinct attempts, for a
total of 90 impostor test utterances.

The results are plotted in Fig. 2. For the appropriate
combination of thresholds, the above system leads to 0 false
acceptances and 20 false rejections (10.4%). After tuning
to obtain an equal number of false acceptances and false
rejections, we observed approximately a 4% equal error rate.

6. CONCLUSIONS

We have presented a novel approach to the dual veri�ca-
tion of speaker identity and verbal content in a desktop
voice login application. Because enrollment is limited to
an average of about 7 seconds of speech, usual HMM-based
methods are prone to scarce data problems. To avoid such
issues, we have decoupled the analysis of speaker and verbal
content information, and used a light-weight component to
tackle each: an SVD component for global spectral match-
ing, and a DTW component for local temporal alignment.
Because these two components complement each other well,
their integration leads to a satisfactory performance for the
(language-independent) task considered. An equal error
rate �gure of approximately 4% has been obtained in exper-
iments including deliberate imposture attempts. This ap-
proach was commercially released in October 1999 as part
of the \VoicePrint Password" feature of MacOS 9.
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