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ABSTRACT 
Recently [1], a H∞ smoother has been developed and it gives 
good results for noise uncertainties. Nevertheless, when 
appear uncertain parameters, its performances decrease 
significantly. That’s why, in this paper, an estimator robust to 
noise uncertain properties and parameter uncertainties is 
presented. As in [1, 4, 6], the robust H∞ smoother for uncertain 
systems is developed as a combination of two robust H∞ 
filters. The robust performances, for both noise and parameter 
uncertainties, of this new approach are evaluated on a simple 
example. 

1. INTRODUCTION 
Optimal filtering problem have widely been treated over the 
last decades [5, 7, 9, 10]. Recently, problems involving noise 
uncertain statistics have been tackled. Various approaches 
have been developed in the continuous time domain [7, 10] 
and the discrete time domain as well [7, 10]. As noise 
statistics uncertainty can be considered as a model uncertainty, 
the aspect of model uncertainty has been of interest, recently. 
In the state space framework, these model uncertainties are 
related  to the dynamic matrix and the output matrix of the 
system under consideration [3, 11]. In this situation, the 
uncertainty can be modelled as an exogenous noise [3] and the 
problem is handled as noise uncertain statistics problem. In 
the present paper, such an approach is adopted in order to 
derive an optimal H∞ smoother robust to both noise uncertain 
statistics, dynamic matrix and output matrix uncertainties for 
continuous time systems represented by state space equations. 

2. STATEMENT OF THE PROBLEM 
Let us consider the following linear continuous time uncertain 
system: 
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where: 
!" nx ℜ∈ , py ℜ∈ , mz ℜ∈ , w and v are uncorrelated 

stationary zero mean white noises;  
!"A, B, C, L are constant matrices with suitable 

dimensions. 
The following assumptions are made: 
(A1). (A,C) detectable; 
(A2). (A,B) controllable; 

(A3). The noise covariance are defined as: 
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with I denotes the identity matrix; 
(A4). ∆A(t) and ∆C(t) represent the parameter uncertainties. 

They are modelled as: 
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with: 
!" ( ) jitF ×ℜ∈  an unknown matrix with Lebesgue 

mesurable elements, satisfying ItFtF ≤′ )()( ; 
!"Ha(t), Hc(t) and E(t) are known continuous 

bounded matrices with real values. 
 
An H∞ optimal smoother estimating the signal z(t) from 
measurement y(t) and for all acceptable uncertainties is sought 
considering the quadratic optimisation of the ratio between the 
energies of noises and estimation error respectively. 
The estimation error is defined by: 

)(ˆ)()( tztzte −=  Eq. 2.4 
Finally, the problem can be stated as follows: 
Given γ, a strictly positive real, indicating the level of noise 
attenuation, a performance criterion is defined such as 
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Furthermore, the system is supposed to be quadratically 
stable; i.e., there exists a definite positive symetric matrix such 
that: 
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Remark 1: In this paper, 2
2

v  is the norm L2 [0, T] and A’ is 

the transpose matrix of A. 
 

3. OPTIMAL H∞∞∞∞ SMOOTHER 

3.1. Definition of an auxiliary problem 
 
In order to design an H∞ smoother for uncertain continuous 
time systems, the combined use of a forward and a backward 
filter will be done. The construction of such a smoother is 



based on the result presented in [1]. According to [4], an 
optimal smoother can be obtained as the combination: 
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with fx̂  and bx̂  being the optimal estimates of the forward 
filter and the backward filter respectively. 
These two filters are derived considering the following 
representation : 
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with nℜ∈η is the state, jm
mz +ℜ∈  the signal to restore, ε a 

stricly positive real number and: 
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Furthermore, the initial conditions are assumed to be null. 
 
An optimal estimate mẑ  of zm is sought minimising the 

criterion : 2
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The H∞ optimisation problem can be handled as a minimax 
one as follows : 
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This criterion can be rewritten as : 
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 Eq. 3.6 
considering : 

- the definite positive symmetric equation solution to the 
DRE (Differential Riccati Equation): 

EEPBBPAPPAP ′ε+′++′=− 2!  Eq. 3.7 
- the following Lyapunov function : 
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Assuming that : η′+= PBww ˆ  
one can consider the auxiliary problem: 
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with the associate model: 
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Consequently, the H∞ smoothing problem for uncertain 
systems can be considered as a classical H∞ problem for noise 
uncertain statistics. Furthermore, the estimates fx̂  and bx̂  are 
derived considering the criteria: 
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γ must satisfy the two criteria defined by the equations (3.11) 
and (3.12). γ is defined as: 

( ) 0,,,max >γγγγγ=γ bfbf with  Eq. 3.13 

3.2. Forward Filter 
The problem is to find a filter minimising Jf. The criterion can 
be written as a minimax criterion as follows: 
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The optimal H∞ filter minimising the criterion (3.11) is given 
by the following result: 
 
Theorem 1: Let us consider the linear continuous time -
system defined by (2.1).The filter minimising (3.11) is given 
by: 

( ) )ˆ(ˆˆ fmfff xCyRDBCQxAx −′+′+=!  Eq. 3.15 

if and only if there exists a positive definite symmetric 
differentiable matrix Qf(t) satisfying: 
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❏❏❏  
 
Sketch of the proof: 
Let the Hamiltonian: 
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One can easily derive the expression of the adjoint: 
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using the Riccati transformation: fff Q Ψ+η=η ˆ  
where Qf is a symmetric definite positive matrix, the following 
expression can be obtained after some calculation: 
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Considering the previous relation, the criterion can rewritten 
as: 
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Considering the null term: 
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The criterion can be expressed as: 

( ) 0ˆ)ˆˆ(
1

max
ˆ

min

2

2

2
1

2
222

<η−−−η
γ

=
∈ fmff

f
f

mf
CyRxLJ

Lyx

 Eq. 3.22 
In order to minimise this expression, the first term is equated 
to zero choosing ff x̂ˆ =η . This completes the proof. ♣♣♣  

 

3.3. Backward filter 
The estimation is done processing the data from T to 0. The 
optimal H∞ backward filter minimising criterion (3.12) is 
given by the following result: 
 
Theorem 2: Let us consider the linear system time invariant 
defined by (2.1). The a filter minimising (3.3) is given by the 
expressions: 
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if and only if there exists a positive definite symmetric matrix 
Qb(t), continue, differentiable and such as: 
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The result can be prooved using the same technique as in the 
previous section. However, caution should be taken handling 
the backward differential equations arising in the optimisation. 
 

3.4. H∞∞∞∞ optimal smoother 
The synthesis of the smoother using the technique presented in 
section 3, gives rise the following result: 
Theorem 3: There is a H∞ optimal smoother such that 2γ<J , 
if there exists two H∞ optimal filters such that: 
Forward filter: 
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Backward filter: 
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H∞∞∞∞ optimal smoother: 
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with Qb and Qb defined has in Theorem 1 and 2. ❏❏❏  

4. APPLICATION 
Let us consider the nominal expression for linear continuous 
time system: 
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{ }3,2,1 −−−= diagA  [ ]'11125 −=B  
[ ]121−=C  [ ]111=L and D =1 

As no H∞ smoother for both uncertain noise statistics and 
plant parameters do exist, the performance of the new tool will 
be compared to the H2 smoother. The evaluation of the H∞ 
smoother will be processed in two steps. 
Firstly, in order to show the robustness regarding uncertain 
measurement noise statistics, a study will be done assuming no 
model parameter uncertainty. In the example, both H2 and H∞ 
are designed with the same nominal value of the measurement 
noise statistics. However, the real value is evolving in a ratio 
of 1/5 and 5 with regard to the nominal value. Figure 1 shows 
the efficiency of the H∞ smoother. 

0

0,1

0,2

0,3

0,4

0,5

0,6

1/5 1/4 1/3 1/2 1 2 3 4 5

EM
Q

r

H2 H infinity for uncertain system
 



FIG. 1: Robust H∞ smoother, and H2 smoother. Variation of 
noise properties between 1/5 to 5 of the nominal 
value. 

Secondly, as the H∞ smoother has been developed for 
uncertain plant parameters, parametric robustness is studied 
considering no noise uncertainty. 
Consequently, the following  parameter variation is 
considered: 

{ }3,2,1 −δ+−−= diagA  with δ = -0.2 to 0.2 
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FIG. 2: Robust H∞ smoother, and H∞ smoother.  
The figure 2 shows the robustness property of the H∞ 
smoother with respect to the uncertain parameter. 

5. CONCLUSION 
The incertitude issue of modelisation has been extended to 
modelisation of noise as well as for system. Since today, for 
the non causal estimation topic for linear continuous time 
systems, we found in litterature a H∞ smoother [1] respect to 
noise statistical properties. The problem is that one doesn’t 
give good performance when we’re confronted to uncertain 
parameters. So a robust H∞ smoother has been developed in 
this paper in order to fill this lack and offer good performance 
regarding to modelisation uncertainties. The simulation has 
shown the performance increase that offers such a technique. 
When uncertainties disappear, smoothers performances tend 
to join. The H∞ smoother appeared to be a sub-optimal version 
a sub-optimal version of the robust H∞ smoother defined in 
this paper. 
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