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ABSTRACT

Recently [1], a H., smoother has been developed and it gives
good results for noise uncertainties. Nevertheless, when
appear uncertain parameters, its performances decrease
significantly. That’s why, in this paper, an estimator robust to
noise uncertain properties and parameter uncertainties is
presented. As in [1, 4, 6], the robust H,, smoother for uncertain
systems is developed as a combination of two robust H.,
filters. The robust performances, for both noise and parameter
uncertainties, of this new approach are evaluated on a simple
example.

1. INTRODUCTION

Optimal filtering problem have widely been treated over the
last decades [5, 7, 9, 10]. Recently, problems involving noise
uncertain statistics have been tackled. Various approaches
have been developed in the continuous time domain [7, 10]
and the discrete time domain as well [7, 10]. As noise
statistics uncertainty can be considered as a model uncertainty,
the aspect of model uncertainty has been of interest, recently.
In the state space framework, these model uncertainties are
related to the dynamic matrix and the output matrix of the
system under consideration [3, 11]. In this situation, the
uncertainty can be modelled as an exogenous noise [3] and the
problem is handled as noise uncertain statistics problem. In
the present paper, such an approach is adopted in order to
derive an optimal H,, smoother robust to both noise uncertain
statistics, dynamic matrix and output matrix uncertainties for
continuous time systems represented by state space equations.

2. STATEMENT OF THE PROBLEM

Let us consider the following linear continuous time uncertain
system:
x(t)=[A+aAD)xE)+Bw(t)
y(t)=[c +acw]xt)+vk)
2(t) = Lx(t) with tO[0,T]
where:

x00", yOOP, zoo™, w and v are uncorrelated

stationary zero mean white noises;
A, B, C, L are constant matrices with suitable
dimensions.
The following assumptions are made:
(Al1). (AC) detectable;
(A2). (A,B) controllable;

Eqg.2.1

(A3). The noise covariance are defined as:
Ew(t)w ()] =1 8(t-1)
Efv).v (1) =1 8(t-1)
with | denotes the identity matrix;
(A4).AA(t) and AC(t) represent the parameter uncertainties.
They are modelled as:

%Am%mhw%MEm
lacwl He.0)8
with:
3] F(t)DDixj an unknown matrix with Lebesgue
mesurable elements, satisfying F'(t) F(t) <1 ;

& Hi(t), H(t) and E(t) are known continuous
bounded matrices with real values.

Eq. 2.2

Eq. 2.3

An H, optimal smoother estimating the signal z(t) from
measurement y(t) and for all acceptable uncertainties is sought
considering the quadratic optimisation of the ratio between the
energies of noises and estimation error respectively.

The estimation error is defined by:

e(t) =z(t) - 2(t)

Finally, the problem can be stated as follows:
Given vy, a strictly positive real, indicating the level of noise
attenuation, a performance criterion is defined such as
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Eq. 2.4
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< Eq. 2.5

Furthermore, the system is supposed to be quadratically
stable; i.e., there exists a definite positive symetric matrix such
that:

[A+AA(t)]’P+F"+P[A+AA(t)]<O Eq.26

Remark 1: In this paper, ||v||22 is the norm L, [0, T] and A’ is

the transpose matrix of A.

3. OPTIMAL H, SMOOTHER

3.1. Definition of an auxiliary problem

In order to design an H. smoother for uncertain continuous
time systems, the combined use of a forward and a backward
filter will be done. The construction of such a smoother is



based on the result presented in [1]. According to [4], an
optimal smoother can be obtained as the combination:

%0 = Qo 0+ 5% 0)
Q=lot+at*

with X; and X, being the optimal estimates of the forward

filter and the backward filter respectively.
These two filters are derived considering the following
representation :

n(t):An(t)@ %Haﬁmo
with n(0)=ng =0
Ym(® =Cn(t) + @ ZH @m‘(t) ()

zn® =L eEIn®) with tO[o,T]
with nO0O"is the state, z,, 00 ™*] the signal to restore, € a
stricly positive real number and:

- 0 1, 0=_0 1.0
B_% aHaHD_@ e e
X

Ym =Y
Furthermore, the initial conditions are assumed to be null.

Eq.3.1

Eg. 3.2

Eq. 3.3

An optimal estimate Z, of z, is sought minimising the

2
criterion: J, = sup M<y2 Eq.3.4

_ 2 2
Wiz [l +v
with: ey =z =2y
tn®=[2 o =[L' d'%)
The H., optimisation problem can be handled as a minimax
one as follows :

o 01 2 2 2B
In =min max B lenl; W, - D<o Ea3s
This criterion can be rewritten as :
_ o Dl ~ \|12 = 2 2D
In=Jn +V =min w%%ﬁéﬁ“l'(” =X ), [ -8-Pa, M 5(0
Eqg. 3.6

considering :
- the definite positive symmetric equation solution to the
DRE (Differential Riccati Equation):

~P=AP+PA+PBB'P+¢£2EE Eq. 3.7

- the following Lyapunov function :

v=[ Lypn)dt=0
2 ko 112

=-e?|Enl; ~[w-B"Pn[;, «F];
Assuming that : W =W+ B'Pn
one can consider the auxiliary problem:

5 2
L —

J. = su M< 2 Eq. 3.9

" ity [ +[2

with the associate model:

O A=An+Bw

0 . Eq. 3.10
¥Ym =Cn+Dw+v

Consequently, the H., smoothing problem for uncertain

systems can be considered as a classical H., problem for noise
uncertain statistics. Furthermore, the estimates X; and X, are

derived considering the criteria:

"L(n_;(f lE <y2 Eq. 3.1

Ly 2+

. \2
L —_
| (n Xbmz <y§ Eq.3.12

W,vOLy 5 +v3

y must satisfy the two criteria defined by the equations (3.11)
and (3.12). y is defined as:
y:max(yf,yb) with v,y¢,yp >0 Eqg. 3.13

3.2. Forward Filter
The problem is to find a filter minimising Js. The criterion can
be written as a minimax criterion as follows:

. et RN
rglan,T%XLz f—EEVf " (fl Xf)||2 ||W"2 "VHZE
Eq. 3.14

The optimal H,, filter minimising the criterion (3.11) is given
by the following result:

Theorem 1: Let us consider the linear continuous time -
system defined by (2.1).The filter minimising (3.11) is given
by:

%t =A%¢ +(QC"+BD')R(ym ~CR¢) Eq. 3.15

if and only if there exists a positive definite symmetric
differentiable matrix Q(t) satisfying:

Qt = AQg +Qf'&'—Qf%'R5‘L2L§?f +BIB
H vi Eq. 3.16
A=A-Brpc and rR=(1+DDJ"
Q1 (0)=0 r=(+od)*
[

Sketch of the proof:
Let the Hamiltonian:

O
1 . yLbf .\ .. - —\ = =
H¢ :—@—xf)—z@—xf)—va—(ym—Cn—Dw)(ym—Cn— WE
2g v §
+\P¢[Kr]+B_W]
Eq. 3.17
One can easily derive the expression of the adjoint:

W Z—LZL(I’] - )2f )—E'R (ym —6]’])— ;’Wf
Ys Eg. 3.18

R=1-DrD' and A=A-BrDC



using the Riccati transformation: n=n¢ + Qs¥;

where Qs is a symmetric definite positive matrix, the following
expression can be obtained after some calculation:

Qt = AQy +Qf'&'_Qf% RC __ngf +BI B
H Vi B
_D')R(Ym _Gﬁf)‘*Qf%(ﬁf -if)
f

J>
)>
J)
+
(o)
O

Eg. 3.19
Considering the previous relation, the criterion can rewritten
as:

min max Jj :%"L(ﬁf —?f)||§+i2|LquJf||§
Y f

Xt ymOL2
1 S I G [ 2
-IR2(ym-CAy ) -r2Bw| -|R2CQsw; Eq. 3.20
2 2 2
+2Igy ~ChyJRC +(qf—xf)—ggfwfdt<o
Yig
ConS|der|ng the null term:
T d
Wi = [— W] We Jdt =0 Eqg. 3.21
f .gdt( t Qf f) q
The criterion can be expressed as:
2

1

n)w(ufnynr]n%xl_sz —é"L(ﬁf ->A<f)||§‘ FZE(Ym‘(?ﬁf 2<0

Eq. 3.22
In order to minimise this expression, the first term is equated
to zero choosing ¢ =Xt . This completes the proof. sd&s

3.3. Backward filter
The estimation is done processing the data from T to 0. The
optimal H., backward filter minimising criterion (3.12) is
given by the following result:

Theorem 2: Let us consider the linear system time invariant
defined by (2.1). The a filter minimising (3.3) is given by the
expressions:

iXb =—AXb +(QbC —BD) (ym—E)A(b) Eq. 3.23

dt

if and only if there exists a positive definite symmetric matrix
Qu(t), continue, differentiable and such as:

~ 9 = +AQy +QuA +QC'RE ~ L0y ~BT B
dt ytz)
Qy(T)=0 Eq.3.24
[

The result can be prooved using the same technique as in the
previous section. However, caution should be taken handling
the backward differential equations arising in the optimisation.

3.4. H,optimal smoother
The synthesis of the smoother using the technique presented in
section 3, gives rise the following result:
Theorem 3: There is a H,, optimal smoother such that J < y2,
if there exists two H,,optimal filters such that:
Forward filter:

R¢ = A%; +(Q;C/+BD:)R (yn~Cky)

. ~ ~ _ |_|_ _ Eq. 3.25
Qi =AQ¢ +Qs A-Q¢ L,RC - % f+BIB:
Backward filter:
d. _ —. N — — .
—Xy =—-A C'-BD’ -C
d'[Xb Xb ( ( X)
T PNTNY U SN L T R
—d—Qb:AQb+QbA +QuC'RC ——Z@b—BFB
' H Y f
Eq. 3.26
H,,optimal smoother:
1
20 =R + Q) R () + QM (1)
brabmoae)

Q=Cov(x—X)= (Q;1 +Qb_1
with Q, and Q, defined has in Theorem 1 and 2. il

4. APPLICATION

Let us consider the nominal expression for linear continuous
time system:
x(t)= Ax(t)+ Bw(t)
y(t)=C x{t)+ +Dw(t) +v(t)
2(t) = Lx(t) with t0[0,T]
A=diag{-1-2,-3 B=25f1 1 -1

c=[-1 2 1 L= 1 gdandD=1
As no H, smoother for both uncertain noise statistics and
plant parameters do exist, the performance of the new tool will
be compared to the H, smoother. The evaluation of the H,
smoother will be processed in two steps.
Firstly, in order to show the robustness regarding uncertain
measurement noise statistics, a study will be done assuming no
model parameter uncertainty. In the example, both H, and H.,
are designed with the same nominal value of the measurement
noise statistics. However, the real value is evolving in a ratio
of 1/5 and 5 with regard to the nominal value. Figure 1 shows
the efficiency of the H,, smoother.

Eq. 4.1

0,6
0,5 7
0,4
0,3 7
0,2 7
0,1 7
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FIG. 1: Robust H,, smoother, and H, smoother. Variation of
noise properties between 1/5 to 5 of the nominal
value.

Secondly, as the H., smoother has been developed for

uncertain plant parameters, parametric robustness is studied

considering no noise uncertainty.

Consequently, the following

considered:

A=diag{-1,-2+3,-3 with5=-0.2t00.2

parameter variation is

EMQr

-0,20 -0,12 -0,04 0,04 0,12 0,20
1

—*—H infinity —*H infinity for uncertain system

FIG. 2: Robust H., smoother, and H,, smoother.
The figure 2 shows the robustness property of the H,,
smoother with respect to the uncertain parameter.

5. CONCLUSION

The incertitude issue of modelisation has been extended to
modelisation of noise as well as for system. Since today, for
the non causal estimation topic for linear continuous time
systems, we found in litterature a H,, smoother [1] respect to
noise statistical properties. The problem is that one doesn’t
give good performance when we’re confronted to uncertain
parameters. So a robust H., smoother has been developed in
this paper in order to fill this lack and offer good performance
regarding to modelisation uncertainties. The simulation has
shown the performance increase that offers such a technique.
When uncertainties disappear, smoothers performances tend
to join. The H,, smoother appeared to be a sub-optimal version
a sub-optimal version of the robust H,, smoother defined in
this paper.
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