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ABSTRACT

In this paper, we compare two structures for combined Equaliza-
tion/Detection of linear codes over frequency selective channels.
The structures come from different families of codes: convolution-
nal codes on one hand and parity check block codes on the other
hand. First, we show that the joint receiver process corresponds
to an iterative belief propagation schedule on graphical represen-
tations. Then, we draw and comment the simulation results for
various codes and channel choices.

1. INTRODUCTION

There has been a increasing interest in coding theory since the
introduction of turbo-codes in 1993 [1]. As a first consequence,
many new coding and/or decoding techniques have been proposed
[2, 3]. It turns out that all good codes are random-like codes and
that they share a common decoding algorithm: the Belief Propa-
gation on graphical representations [4]. It has been demonstrated
that the best codes representations are factor graphs since they are
powerful tools to develop decoding algorithms and can be easily
generalized to other communication problems. As a matter of fact,
one may use belief propagation on graphs for any problem that is
composed of a concatenation of two or more blocks, provided that
probability density fonctions can be passed between the blocks at
the receiver. In this paper, we are interested in joint equalization
of frequency selective channels and decoding. The two receiver
components are the equalizer and the decoder as described on fig-
ure 1. The receiver proceeds iteratively on a block of received
data in order to build estimations of the transmitted symbols uk. If
convergence is achieved, the receiver output is the optimum solu-
tion (maximum a posteriori) of the joint equalization and decoding
problem. In the communication chain of figure 1, we have added a
permuter in the transmitter and an inverse permuter in the receiver.
The advantage of permuting the information bits is a consequence
of the turbo-codes structure and is argued in section 3.
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Fig. 1. Communication problem that we address.

As long as we can build a graphical representation for the con-
catenation of the code and the channel, we may apply belief prop-

agation on it. Therefore various coding schemes can be considered
and we propose in this paper to compare the performance of com-
bined Equalization-Decoding for two types of codes:(i) system-
atic recursive convolutional codes (SRC codes) and(ii) Gallager
low density parity check codes (LDPC codes). Which code fam-
ily is best suited when the channel is frequency selective ? In this
contribution, we try to answer this question through extensive sim-
ulations. The paper is organized as follow: in the second section,
we present the factor graphs of the SRC code, the LDPC code and
the frequency selective channel. Together with the graphs, the be-
lief propagation algorithm is pointed out in each case. In section
3, the joint problem of equalization and decoding is addressed and
the proposed algorithm is depicted. In section 4, we show the sim-
ulation results and discuss the advantages and drawbacks of each
structure. Section 5 concludes the paper with some outlooks.

2. FACTOR GRAPHS AND BELIEF PROPAGATION

Factor Graphs have been proposed by Wiberg [5] as a generaliza-
tion of Tanner graphs in coding theory. They are bipartite repre-
sentations of systems composed of data nodes and function nodes.
The data nodes represent observations, input symbols or hidden
state variables while the function nodes describe how their adja-
cent data nodes interact. The branches of the graph carry proba-
bility weights that comes in and out the data nodes: they are either
interpreted asa priori or a posteriori information. Belief propa-
gation in a graph depicts how the weights are updated until a fixed
point has been reached [4]. It can be shown that exacta posteri-
ori weights can be computed if the factor graph is indeed a tree,
that is there is no cycles in the graph. Besides, if the cycles in the
graph are “sufficiently” long, iterative decoding with probability
propagation yields excellent (though approximate) results, close
to optimum performance.

2.1. Factor Graphs for Convolutional Codes

Throughout this paper, we shall only consider rate1
2

systematic re-
cursive convolutional codes. A convolutional code is specified by
its state length� and its generator polynomialsGn andGd, writen
in octal form [6]. All convolutional codes are finite state Markov
chains, and then have a very simple graphical representation (cf.
figure 2).

Letsun be the input bits andSn the state vector of the encoder.
One output of the encoder isun because of the systematic part of
the code and the other outputrn is the redundant bit, computed
from the previous stateSn�1 and the present information bitun.
The messages on the branches that are connected to a state vector
are probability weight vectors of size� and the function nodes are
indicator functions that tell whether there is a connection between
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Fig. 2. Factor graph of a convolutional code.

the neighboring data nodes. In mathematical form, we have:

F (un;Sn;Sn�1; rn) = 1I[un;Sn;Sn�1;rn]
The well known BCJR algorithm [7] which provides the posterior
weigths of the information bits is an instance of Belief Propagation
in the graph described on figure 2. The propagation schedule that
we used is the same than the one proposed for the BCJR algorithm,
which is to compute the probability weights for the state nodes
Sn (these weights are called �n and �n in the BCJR algorithm).
Then, the a posteriori distributions for each un and each rn are
computed. For more details, one can refer to [4]. Note that the
graph in figure 2 is actually a tree and belief propagation converges
in one iteration to the maximum a posteriori (MAP) solution.

2.2. Factor Graphs for Gallager Codes
The other family of codes we investigate are Gallager block codes
which are defined by a parity check matrix. These block codes
have been proposed by Gallager in 1963, together with a stochas-
tic decoding algorithm which is very close to belief propagation.
MacKay & al. have rediscovered and extended LDPC Gallager
codes recently [2] and have shown that Gallager codes can be eas-
ily decoded with iterations of belief propagation on their factor
graph (cf. figure 3).
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Fig. 3. Factor Graph of a LDPC Gallager code (2; 4).

The factor graph of a Gallager code is even simpler than for
convolutional codes. Information bits and redundancy bits are
linked through function nodes that indicate if the sum of the bits is
even. For example, the first function node in figure 3 is simply

F (u1; u2; r1; r2) = 1Iu1+u2+r1+r2=0(mod2)

A Gallager code is regular if each node participates to the same
number t of check functions and if each check is connected to the
same number tr of nodes. The Parity check matrix has then con-
stant column weight t and constant row weight tr. If moreover
t and tr are small, the parity matrix is sparse, reason why Gal-
lager codes are named low density. Throughout this paper, we will
consider rate R = tr�t

tr
= 1

2
LDPC codes. Figure 3 gives the

example of a Gallager (t; tr) = (2; 4) code with codeword length
N = 6. For more details on Gallager codes and clever encod-
ing algorithms, refer to [2]. Despite SRC codes’ graphs, LDPC

codes’ graphs have cycles and many iterations of a belief propaga-
tion schedule are needed to reach a fixed state. We have adopted
the so-called flooding schedule as described in [8] in order to de-
code our LDPC codes.

2.3. Factor Graphs for Frequency Selective Channels
Basically, the factor graph of a frequency selective channel is al-
most the same as for a SRC code (cf. figure 4). x1!N are the
transmitted symbols, z1!N are the outputs of the dispersive chan-
nel with impulse response h0!L and y1!N are noisy versions of
z1!N (observed values). Sx0!N are the state vectors of the chan-
nel: Sxn = [xn�1 : : : xn�L]
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Fig. 4. Factor Graph of a frequency selective channel.

In order to make the description of the graph complete, we
have to give the expressions for the function nodes. The “ top”
function nodes in the graph of figure 4 represent the evolution
equations of the channel Markov chain. These nodes are therefore
indicator functions that give the state value Sxn and the output of
the convolutive channel zn, knowing the input of the channel xn
and its previous state Sxn�1:

F (xn;Sxn;Sxn�1; zn) = 1I[xn;Sxn;Sxn�1;zn]
The “bottom” function nodes in figure 4 are nothing else than the
Likelihood values of the channel outputs:

F (yn; zn) =
1

p
2��b

exp

�
�

1

2�2b
(yn � zn)

2

�

Using belief propagation on the graph of figure 4 is equivalent to
using the MAP equalizer proposed by Bahl et al. [7]. Just like
the convolutional code, the graph is a tree and belief propagation
converges in one iteration.

3. JOINT EQUALIZATION AND DETECTION

The idea behind joint processing at the receiver is to pass soft in-
formation from one block to another in a clever way. The best
strategy is to pass a posteriori probability densities coming out one
block and use them as a priori densities for the next block. The
iterative propagation of the densities between two or more receiver
components is the base of turbo-decoding and is usually named the
“turbo-principle”. In order to investigate the turbo-principle on a
joint equalizer/decoder, we have to build the factor graph of the
concatenation of the encoder and the channel.

3.1. SRC codes
In [9] it is argued that a permuter must be added before the trans-
mission in order to separate the state spaces of the encoder and of



the channel. When a permuter is present, the structure of the re-
ceiver behaves exactly as a Turbo-decoder: two BCJR algorithms
separated by a random permuter. In the early literature about turbo-
decoding [1], a soft value called “extrinsec” information was com-
puted in order to pass the probability weights from one block to an-
other in an iterative fashion. A simpler and clearer way to interpret
this soft information is to build the graph for the concatenation of
the encoder, the permuter and the channel and to apply belief prop-
agation on it. The graph is drawn on figure 5 where the two main
components are described in details in section 2. This time, the
graph has cycles and the permuter allow to turn the short cycles
into long ones. If there is no short cycle, the graph is viewed from
one particular node almost as a tree and belief propagation will
perform well.

Permuter
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coded bits

Fig. 5. Factor graph for SRC codes and frequency selective chan-
nels. The top of the graph represents the encoder and the bottom
represents the channel.

The belief propagation schedule is a generalization of the turbo-
decoding algorithm: a forward/backward schedule is applied to
the channel graph (which is the BCJR equalizer) then the poste-
rior probabilities are permuted and used as prior information for
the forward/backward schedule in the SRC code graph. This de-
scribes one iteration of turbo-principle on the joint graph of figure
5. Many such iterations must be performed in order to achieve
convergence to a fixed point.

3.2. LDPC codes
For LDPC codes, there is no need to consider a permuter in the
transmitter since the sparseness of the parity check matrix ensures
that there is no short cycle in the corresponding graph (provided
that the LDPC code has been carefully chosen). This is an advan-
tage over the SRC codes because we can easily close the channel
graph (force the last state node to 0), which is not possible in a
simple way for the SRC structure of figure 5. The graph for joint
equalization and decoding of LDPC codes is given in figure 6.
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Fig. 6. Factor graph for LDPC codes and frequency selective chan-
nels. The top of the graph represents the encoder and the bottom
represents the channel.

We have adopted the same kind of schedule as in the previous
section: one performs iteratively belief propagation on the channel

graph then on the code graph. Notice that a few iterations of belief
propagation on the code graph have to be done before propagating
the probability weights to the channel graph because the LDPC
decoder works itself in an iterative fashion.

4. SIMULATION RESULTS

In order to make a fair comparison between the two presented
structures, we have considered the same assumptions for the trans-
mission. We have chosen to consider a small code and a powerfull
code for each family of codes and two frequency selective channels
which are known as hard to equalize, namely the Proakis-B and
Proakis-C channels [6]. The two SRC codes are rate 1

2
: (1; 5=7) is

the small code of constraint length � = 2 and (1; 171=133) is the
powerfull code of constraint length � = 7. The two LDPC codes
are also rate 1

2
codes and are regular Gallager codes. LDPC(2; 4)

is the small code and LDPC(3; 6) is the powerfull code. The trans-
mission is BPSK modulated and perfect knowledge of the channel
taps is assumed. The size of the transmitted blocks has been cho-
sen small N = 1000, so that it could correspond to a realistic
transmission. The size of the permuter is then N = 1000 and
the length of a Gallager codeword is also N = 1000. It was not
possible to draw all the simulation results, and we have chosen
to present only the case of the small code and Proakis-C channel,
and of the powerfull code and Proakis-B channel for each family
of code. The Simulations have been done with 107 bits and are
reported in figures 7-10. For each figure, we have drawn the per-
formance of the code over an AWGN channel, which corresponds
to the lower bound of the transmission. We have also drawn the
iterations number 1, 2, 5 and 15 of the turbo-receiver.
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Fig. 7. SRC(1; 5=7) code and Proakis-C channel

As a first reamark, we can notice that joint equalization and
detection performs really well since the iterated process is very
close to the optimum curve. Another common remark is that the
performance are closer to the optimum as the signal to noise ratio
increases. This could certainly be explained with the same kind
of analysis as in [10] and we will investigate this aspect in future
work. Regarding the comparison between SRC and LDPC codes
for joint equalization and detection, it appears that SRC codes al-
low the joint iterative receiver to converge to its optimum perfor-
mance at high SNR. This is not the case for LDPC codes since
there is a gap between the result of belief propagation and the
coded AWGN lower bound: almost 1dB at Pe = 10�5 . The
reason could be twofold: it could come from the very structure
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Fig. 8. LDPC(2; 4) code and Proakis-C channel
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Fig. 9. SRC(1; 171=133) code and Proakis-B channel

of LDPC codes or from the fact that this code must be decoded
iteratively. We have no clear answer to venture. Despite this draw-
back, LDPC codes achieve the same overall performance than SRC
codes for the same decoding complexity. Indeed, for the Proakis-B
channel at Eb=N0 = 7dB, both codes provide an error probabil-
ity of ' 10�6 and for Proakis-C channel at Eb=N0 = 5dB we
obtain Pe ' 10�5 (recall that the codes for the two channels are
differents).

5. CONCLUSION AND OUTLOOKS

As a conclusion, this comparison study has shown that there is no
clear advantage between SRC codes and block LDPC codes for
joint equalization and decoding. There is a tight advantage for
SRC codes since the iterative receiver converges to its optimum
performance, though there is a gap of almost 1dB for LDPC codes.
However, it is a lot easier to build LDPC codes for a wide range
of code rates, which is not the case of SRC codes. LDPC codes
could therefore be prefered for some applications since they per-
form as well as SRC codes and they are more versatile. It should
be interesting to compare LDPC codes with another family of it-
eratively decodable codes: namely turbo-codes. This could give
some insights about the gap between the iterative receiver perfor-
mance and the optimum AWGN curve.
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Fig. 10. LDPC(3; 6) code and Proakis-B channel
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