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Abstract

The problem of diversity signal reception using quantized data is
considered. This problem arises in situations where multiple
receivers are employed over a geographically broad area. We
propose a method for the design of the quantizers that are used by
the receiver to make soft decisions. This quantizer minimizes the
mean-squared error between the quantizer output and the log-
likelihood ratio associated with the receiver observation. The soft
decisions are then combined at a central location to yield the final
decision. Our quantizers are then applied to the coherent detection
of a BPSK signal over Rayleigh fading channels. Simulation
results show that using coarse quantizers yields close to optimum
performance.

1. Introduction

Techniques for exploiting multiple receivers for signal detection
have been known for many years and have been successful in
many applications, in particular for diversity signal reception in
telecommunications. These techniques are essentially analog
oriented and have been implemented on digital platforms via the
use of high rate quantizers, i.e. A/D converters, so that the
quantization error will have little impact on the overall signal
detection performance. In recent years, there has been increasing
interest in using low rate quantizers. A potential benefit is
reduction in data volume that may help speed up the signal
detection process. This can be critical in high data rate
applications. For a more important reason, low data rate
quantizers are desirable in applications in which multiple
receivers are geographically separated and connected to a data
network that has limited bandwidth. For example, in a cellular
wireless network, multiple base stations may communicate with a
common mobile user during handover. In such applications, data
obtained at different receivers must be efficiently quantized
before they are transmitted over the data network to a combining
device. The quantizers employed at the receivers should be
designed to best preserve the discriminating power of the original
data while using minimum number of bits.

Hard decision combining has been employed in several
communication applications to compensate fading channels
[1][2][3][4][5]. It has been shown that using hard decision
combining can reduce bit-error-rate (BER). In  [6][7], attempts
have been made to use multi-bit soft decisions to compensate
Rayleigh fading channels and to combat near-far effect in cellular
wireless communications. In these works, the soft decisions were
obtained via a numerical method. A quantizer design
methodology is still lacking.

In this paper, we propose a quantizer based on distributed
detection theory. It is a well-known result that the optimum
quantizers employed at the receivers are likelihood ratio

quantizers [8]. We take the point of view that the discriminating
power associated with receiver observations is carried by
likelihood ratios. From this point of view, we adopt the criterion
that the receiver quantizers should best preserve the fidelity of
likelihood ratios. Based on this criterion, we develop a quantizer
that minimizes the mean squared error of the log likelihood ratio
at the quantizer output. This quantizer is referred to minimum
mean-squared error log-likelihood ratio quantizer (MMSE-
LLRQ).

In Section 2, we will obtain a set of equations that the
parameters of this quantizer must satisfy. We will then propose a
Lloyd type of algorithm that yields MMSE-LLRQs. In Section 3,
MMSE-LLRQs are employed for BPSK signal reception through
Rayleigh fading channels. Some concluding remarks are made in
Section 4.

2. MMSE Log-Likelihood Ratio Quantizer

Let us consider a network of N receivers. The network is used to
observe and decide on an unknown hypothesis which may be
either 0H  or 1H . Let nx  denote the observation obtained by the

nth sensor. Given the unknown hypothesis iH , nx  follows

probability density function ( )nip x , .1,0=i  The receiver

observations are corrupted by statistically independent noises.
Hence, we obtain ( ) ( ) ( )NiiNi ppp xxxx 11 ,, = .

Let nQ  denote the quantizer that is employed at the nth
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the input to nQ . Let nD  denote the number of quantization

levels. The nD  output levels are 
nunl , , namely 1,nl , … and

nDnl , . Let nu  denote index of the output of nQ . We recall that

the optimal quantizer nQ  is a likelihood ratio quantizer that has

the following structure
dun =  if  dnndn tt ,1, <≤− τ , nDd ≤≤1 ,

where +∞=<<<<=−∞
nDndnn ttt ,,0,  are the thresholds.

Let nR  denote the rate of quantizer nQ , where nn DR 2log= .

These quantizer parameters are computed off line and stored and
stored at the decision-combining device.

The receivers send the indices nu , Nn ,,1= , to the

decision-combining device. Based upon received indices, the
decision-combining device retrieves the corresponding quantizer
output levels and decides the identity of the unknown hypothesis
using the following decision rule



λ
π
π =++

<
>

1

0

0

1

,,1   
1

logll
NuNu

, (1)

where 0π  and 1π  are prior probabilities of 0H  and 1H

respectively.

We define the mean squared error associated with nQ  as
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where iE  stands for average when the unknown hypothesis is

iH , 1,0=i .

Now we formulate the problem of designing quantizer nQ  for

a fixed number of levels nD  as
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where the left side is the set of optimal parameters. The resulting
quantizer is referred to as the minimum mean-squared error log-
likelihood ratio quantizer (MMSE-LLRQ). This quantizer is
expected to preserve the discriminating power of receiver
observations, by approximating the log-likelihood ratio under the
MMSE criterion.

Since nQ  works in the log-likelihood ratio space as shown in

(2), we will derive its structure in the log-likelihood ratio space
and then transform back into the observation space. The mean-
squared-error nε  in (2) is expressed as
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Taking partial derivative of nε  with respect to each quantizer

parameter and set it to zero, we obtain a set of necessary
conditions that the optimum quantizer nQ  must satisfy. This

result is stated in the following theorem.

The optimal quantizer that minimizes the nε  must satisfy the

following necessary conditions
Theorem 1: The optimal quantizer nQ  that minimizes the nε
must satisfy the following necessary conditions
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This result is similar to the well-known Lloyd’s result. The
optimal thresholds are the midpoints between consecutive optimal
quantized output log-likelihood ratios. The optimal quantized
output log-likelihood ratios are the local means of the actual log-
likelihood ratios. It is worth pointing out that if the sensor
observation nx  is a vector, then nQ  is a vector quantizer in the

sensor observation space, even though it is a scalar quantizer in
the log-likelihood ratio space.

Putting (5) and (6) into (2), we obtain the value of the
minimum mean-squared error
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A byproduct in the derivation of (7) is
( )[ ] ( )[ ] 0,,11,,00 =−+− nununnunun nnnn

llEllE τπτπ .     (8)

Equation (8) states that the quantization error ( )nun n
l τ−,  is

uncorrelated with the quantizer output 
nunl , .

Next, we propose a Lloyd type of algorithm that cyclically
optimizes the parameters of the MMSE-LLRQs. For notation
simplicity, we will drop subscript n in this section as long as no
confusion arises.

Our algorithm uses the following equations to iteratively
compute the parameters
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where k is the step number. The operation of the algorithm is
described as follows

1. Choose the tolerance of stopping criterion σ . Set

1=k . Arbitrarily choose distinct kt1 , … and k
Dt 1− .

Compute kl1 , … and k
Dl  using (10). Compute 

kε
using (2).

2. Compute 1
1

+kt , … and 1
1

+
−

k
Dt  using (9).

3. Compute 1
1

+kl , … and 1+k
Dl  using (10).

4. Compute 1+kε  using (2). If the difference between 1+kε
and kε  is less than σ , the algorithm terminates.
Otherwise, set 1+= kk  and then go to step 2.

Our algorithm yields a sequence of quantizers that converge
to a local optimum. The convergence of our algorithm is
guaranteed. However, in general, the solution may not be unique
and may be different for different initial conditions.

3. Numerical Results

In this section, we consider the problem of coherent detection of a
BPSK signal over Rayleigh fading channels. We will consider
two cases in which the channels information is or is not available.
For notation simplicity, we will drop the subscript n .

Let us consider the transmission of a BPSK signal through a
fading Rayleigh channel with additive white Gaussian noise
(AWGN). The output x  of the receiver is

zbrx += ,
where r  is the amplitude of the received the signal that follows
Rayleigh distribution, z  is the additive white Gaussian noise with

double side spectral density 2
0N  and b  is the transmitted

information bit, where { }1,1 +−∈b .



Let bE  denote the average energy of the received signal.

With x  normalized by 2
0N , r  follows ( ) ( )γγ 2

2

exp rrrp −= ,

where 
0N

Eb=γ  is the average signal to noise ratio (SNR). Given b

and r , x  follows ( ) ( )( )22

1
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π
.

Case 1: channel information available

In this case, the value of r  is accurately estimated during the
signaling interval. The log-likelihood ratio τ  associated with this
signaling interval is rx2=τ . The cumulative distribution
function of τ  given the transmitted bit b  is
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Taking derivative of ( )τbF  with respect to τ , we obtained the

density function of the corresponding probability density function
of τ  as
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where 
b

b
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γβ += 1 .

In turn, the cumulative distribution function of τ  is
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Equations (12) and (13) are used in our MMSE-LLRQ design
algorithm to obtain the optimum quantizers.

Now, we consider a system of two receivers. The average
signal-to-noise ratio γ  is assumed to be the same for all
receivers. Identical MMSE-LLRQs are employed at all the
receivers.
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Figure 1: BER vs. γγγγ for Case 1.

In Figure 1, BER is plotted against γ  for different values of

R . The BER curve for the one receiver system (1 Rx) is plotted
as an upper bound. The BER curve for the two-receiver system (2
Rx) that employs combining of original receiver likelihood ratios
is also plotted as the lower bound. It is observed that using multi-
bit soft decision combining reduces BER. We notice that there is
a significant gap between the lower bound and the BER when
quantizers are used. A possible explanation is given below. Most
of the errors are attributed to the occurrence of deep fade in both
channels. In such situations, the receiver log-likelihood ratios are
very small thus are not well approximated by the quantizer
outputs. Hence, using quantizers in deep fade situations
significant degrade system performance. This accounts for the
different between the BER curve when quantizers are employed
and the lower bound.

Case 2: channel information unavailable

In this case, it is assumed that the value of the instantaneous
value of r is not available, but the average signal-to-noise ratio
γ  is known. The log-likelihood ratio τ  must be estimated over

the probability distribution of r . Given the transmitted bit b , x
follows probability density function
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where ( )zerfc  is the complementary error function.

With routine calculus manipulation, we obtain the cumulative
probability function of x
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Define 2

βxy = . Putting y  into (3.14) and (3.15), we

obtain the log-likelihood ratio
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Equations (14), (15) and (16) are used in our MMSE-LLRQ
design algorithm to obtain the optimum quantizers.

Next, we will consider a system of two receivers. The average
signal-to-noise ratio γ  is again assumed to be the same for all
receivers. Identical MMSE-LLRQs are employed at all the
receivers.

In Figure 2, BER is plotted against γ  for different values of

R . Similar to Case 1, the BER curve for two-receiver systems is
also plotted as the lower bound. It is observed that using 4 or 5
bits gives close to optimum performance. In this case, we do not
observe a considerable gap between the lower bound and the BER
curves when high rate quantizers are used.
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Figure 2: Probability of error vs. γγγγ for Case 2.

4. Summary

In this paper, we considered the design of quantizers that are
employed in multi-receiver system for signal reception through
fading channels. We used log-likelihood ratios as measures of the
discriminating power of receiver observations. We adopted the
criterion that the receiver quantizers should minimize the mean-
squared error while quantizing log-likelihood ratios. Using this
performance criterion, we developed a generalized Lloyd
algorithm for designing the quantizers. These quantizers were
employed in a two-receiver system that detects a BPSK signal

though Rayleigh fading channel. The numerical results showed
that using coarse quantizers could yield close to optimum
performance.
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