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ABSTRACT

In this paper a multiple mixture segmental hidden Markov
model (MMSHMM) is presented. This model is extended
from the linear probabilistic-trajectory segmental HMM [1].
Each segment is characterized by linear trajectory with
slope and mid-point parameters, and also the residual er-
ror covariances around the trajectory, so that both extra-
segmental and intra-segmental variation are represented.
Instead of modeling single distribution for each model pa-
rameter as earlier work, we use multiple mixture compo-
nents for model parameters to represent the variability due
to the variation within each speaker and also the differences
between speakers. This model is evaluated on two applica-
tions. One is a phonetic classification task with TIMIT
corpus, which shows that MMSHMM has advantages over
conventional HMM. Another one is a speaker-independent
keyword spotting task with the Road Rally database. By
rescoring putative events hypothesized by a primary HMM
keyword spotter, the experiments show that the perfor-
mance is improved through distinguishing true hits from
false alarms.

1. INTRODUCTION

Whether or not being able to accurately modeling the dy-
namics in human speech is one of the important factors
affecting the performance of a speech recognition system.
In recent years, segmental modeling becomes an interest-
ing and attractive area. A variety of methods were intro-
duced in the past [2, 3]. It has been shown that segmental
model has some advantages over conventional HMM, be-
cause HMM takes no account of the dynamic constraints of
the speech production system. In segmental model, time-
correlation between neighboring speech frames are modeled
through different ways. Linear probabilistic-trajectory seg-
mental HMM [1, 4] is one of these approaches. Each speech
segment is represented by a set of statistics which includes
a linear trajectory and residual error around the trajec-
tory. The extra-segmental variability between different ex-
amples of a speech segment is modeled separately from
the intra-segmental variability within the segment. Sin-
gle distribution for each model parameter is used in the
earlier work. However, to better represent the occasion-
to-occasion variation for any one speaker and also differ-
ences between speakers, we believe that using multiple mix-
ture components for model parameters in each segment
can improve the performance of speech recognition sys-
tem. It’s analogous to using mixtures of Gaussians to repre-
sent output probability distributions for HMMs. Although
some work already demonstrated advantages from includ-
ing multiple mixture components in parametric trajectory
segmental models [5, 6] and non-parametric trajectory seg-
mental models [7], including multiple mixture components

into probabilistic-trajectory segmental model has not been
shown in literature. In this paper, a linear probabilistic-
trajectory multiple mixture segmental HMM (MMSHMM)
is presented and evaluated on a phonetic classification task
with TIMIT and also on a speaker-independent keyword
spotting task with Road Rally database. The experiments
show that MMSHMM has advantages over conventional
HMMs.

The rest of the paper is organized in this way. The
representation and estimation of MMSHMM is presented
in section 2. In Section 3, we introduce the applications
of MMSHMM on phonetic classification and keyword spot-
ting. Experiment results are presented in section 4. Section
5 contains conclusion.

2. MULTIPLE MIXTURE SEGMENTAL HMM

2.1. Model representation

A linear trajectory segmental HMM assumes that the un-
derlying trajectory vector change linearly over time within
each segment. Suppose the segmental model M has N
states, i.e. segments, and z = 1, ..., zy iS a state sequence.
Let the observation sequence i = Y, ;- Yt, ;411 COI-
respond to state z;, then the linear trajectory fm,,s can be
defined by the segment mid-point value m and slope s, such
that fm,s(t) = m+ s(t — %) In a least-squared
error sense, the mid-point and slope values which best fit
to such particular sequence of observations ¢; are given by
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The previously introduced joint probability of ¢; and
trajectory parameters is
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i.e., the distributions of m, s and y; are defined by Gaus-
sian distribution Ny, n;, Nu;¢; and Ny, (1),o; Tespectively.
All distributions are assumed to have diagonal covariance
matrices. And for simplicity all observation sequences are
assumed to be one-dimensional.

To better represent the variation within different exam-
ples of one speaker and also the differences between different



speakers, we can extend Eq.( 3) to multiple mixture com-
ponents as
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So piks Miks Vi, ik, Oik and wiy are the model pa-
rameters corresponding to the kth mixture component in
the ith state. The output probability given model param-
eters and state sequence can be calculated by integrating
P(g;, m,s|M,z) over the unknown trajectory parameters
m and s, as
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Similar with [1], we can get the trajectory-independent out-
put probability as
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2.2. Model initialization

To train the model, we need to initialize the model param-
eters first. As pointed out in other literature, the initializa-
tion will largely affect the performance of segmental model.
Based on some initial experiments, we choose the following
way for model initialization. First, the segmentation can
be obtained using Viterbi alignment with trained HMMs.
Then the means and variances of the mid-points can be ini-
tialized from the distribution of the individual mid-points
for each segment. Since we model multiple mixture compo-
nents for each segment, the k-means clustering algorithm
can be used here to get K mixture components distribu-
tions. Then the weights can be set to proportional to the
number of examples belonging to each component. The

variance of the observations around each individual trajec-
tory can be obtained by calculating the residual errors. The
means and variances of the slope are set to zero. In such
way, the slope is constrained in the initialization.

2.3. Model re-estimation

Following the approach of [8], the re-estimation formulae for
MMSHMM parameters can be derived by introducing an
auxiliary function and finding new values for the model pa-
rameters which can maximize that auxiliary function. Such
auxiliary function can be created as

Q(M, M) =Y P(§,3|M)logP(§,|31),  (9)
z€S

where S is the set of possible state sequences. To simplify
notation, we assume the state transition probability matrix
A is strictly left-to-right, such that a;; = 1if j =i +1
and all other transition probabilities are equal to zero. The
auxiliary function can be derived as
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Then by differentiating Q(M, M) with respect to each model
parameter fi; k., ik, Vi k, éi,k, and &; x, and make the deriva-
tives equal to zero, we can get the re-estimation formulae
for these model parameters as follows:
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andi=1,...N, k=1,.. K.

For the mixture component weights w, since there is an
extra constraint that ZII::I w;,, = 1 for each i = 1,..., N,
we can use Lagrange multiplier to get its re-estimation for-

mula as:
g = DessBoustin,
> ves P(F, x| M)
where i =1,..,.N, k=1,..., K.

We can see that the right hand sides of the above for-
mulae include re-estimated parameters. In practice, we can
replace the re-estimated values of [i; x, %i,k, Vik, &k, Tik
and w; ;, on the right hand sides with original values respec-
tively. Experiments in section 4.1 show that such changes
won’t prevent the increase of P(§|M). Usually five itera-

tions of re-estimation are run during the training session of
MMSHMM.

(20)

3. APPLICATIONS OF MMSHMM

In this paper two different applications are used to evalu-
ate this segmental model. The first is the classification of
phones in American English. Another one is to rescore the
putative events hypothesized by a primary HMM keyword
spotter to discriminate true hits from false alarms.

3.1. Phonetic classification

The phonetic classification is to determine the identity of
speech segments with specified phonetic boundaries. Clas-
sification has computational advantages over recognition.
So it can give quick feedback about the performance of
MMSHMM.

Each segmental model corresponds to a phone and has
three states. And each state has one or three mixture com-
ponents. First, the MMSHMM parameters p, n and o
can be initialized based on conventional HMMs with three
states each model. If each segment has K mixture com-
ponents, through the clustering algorithm, these initial pa-
rameters can be generated for each component. The initial
parameters of v and & are set to be zero. Then five itera-
tions of re-estimation are run to re-estimate these param-
eters. After training, these models can be used to classify
the tokens from all phones in the testing set.

3.2. Keyword spotting

MMSHMM can also be applied to keyword spotting to serve
as second processing such as that in [9]. In keyword spot-
ting, the keywords that are of interest to the system are
to be spotted and the irrelevant sounds are to be rejected.
There have been a variety of approaches taken to solve this
problem during last two decades [10].

We use a primary HMM word spotter to get the puta-
tive events first. This HMM word spotter is composed of
a parallel network of both keyword and non-keyword(filler)
models. Using a null-grammar, frame-synchronous network
search algorithm [11], we can get the sequence of keywords
and fillers as putative events. Each HMM in the network is
a continuous Gaussian mixture model. The confidence mea-
sure used in primary word spotter is the log likelihood ratio
between the probability of the obervations that came from
the keyword model, and the probability that came from the
filler network.

In the second processing, two MMSHMMSs can be gen-
erated for each keyword using labeled putative events. One

is for the segments from the true keywords, and the other
is for segments from false alarms. The initialization of
MMSHMM is the same as that in phonetic classification.
After initialization, five iterations of re-estimation are run
for each model. Once these models for each particular key-
word are trained, they are used to rescore new putative
events of that keyword. The secondary score is calculated
as the log likelihood ratio between the probability from the
truth model and the probability from the false alarm model.
To obtain the final score to reorder the putative events
for each keyword, the new secondary scores and original
primary HMM scores are normalized separately and then
summed together.

4. EXPERIMENTS

The feature used for both of the experiments is a feature
vector with 26 dimension for each frame, which includes
log energy, 12 mel cepstral coefficients and their delta coef-
ficients.

4.1. Phonetic classification

The data used for phonetic classification task is the TIMIT
acoustic-phonetic continuous speech database of American
English. The training set includes 3260 utterances from
326 male speakers with 10 sentences for each speaker. The
testing set includes 1120 utterances of 112 male speakers.
During testing, a 39-category scoring set is used as [12].
Language model and duration are not considered in this
experiment.

As introduced in section 2.3, during re-estimation, the
model parameters on the right hands of those formulae are
replaced by original values in practice. To test its reason-
ability, we monitored the changing of the log probabili-
ties of the training set during the five re-estimation iter-
ations. As shown in Fig. 1, the probabilities kept increas-
ing during the training for both the single mixture compo-
nent MMSHMM (K = 1) and three mixture components
MMSHMM (K = 3). This ensured the reliability of the
following experiment results.
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Figure 1: Log probability of phone training set vs. number
of training iterations

Experiment results for phonetic classification are shown
in Table 1. The result of continuous HMM with three
states is also given. In addition to phoneme classification,
a 16 vowels classification task is also tried. And differ-
ent performances from HMM, MMSHMM with K =1 and
MMSHMM with K = 3 are compared.



HMM | MMSHMM(K=1) | MMSHMM(K=3)
phoneme | 61.4% 62.3% 63.8%
vowel 57.5% 58.0% 59.1%

Table 1: Phone classification and vowel classification results
on TIMIT (K is the number of mixture components)

From the results we can see that MMSHMM has ad-
vantages over the conventional HMM. It proves the impor-
tance of representing dynamics between neighboring speech
frames. With one mixture component, MMSHMM is just
simplified to the normal linear trajectory segmental HMM
(SHMM). The results show that with three mixture compo-
nents for each segment, MMSHMM is better than the linear
trajectory SHMM for both phoneme classification and vowel
classification.

4.2. Keyword spotting

The keyword spotting task is evaluated on the Road Rally
database, which has twenty keywords designated. This
database includes two data corpus, the Waterloo corpus
and Stonehenge corpus. The marked keyword occurrences
from the read paragraph speech of the 28 male speakers in
Waterloo corpus are used to train the 20 keyword HMMs.
Each HMM has 10 states, and 9 mixtures for each state.
For each keyword there are 84 to 258 tokens for training.
And the non-keyword speech in the Waterloo are used to
train 20 filler models. These 40 HMMs compose the net-
work in the word spotter. The conversational speech from
10 male speakers in the Stonehenge corpus is used for train-
ing 40 MMSHMMs, with two models corresponding to one
keyword. The number of states in MMSHMM is also chosen
as 10. The speech of 10 other male speakers are used for
testing and comparing HMM and MMSHMM.
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Figure 2: ROC performance curve of HMM and MMSHMM

The ROC performance curve of the primary HMM key-
word spotter and MMSHMM is shown in Fig. 2. Accord-
ing to the NIST standard, composite detection rate for all
twenty keywords is computed and plotted against the false
alarm rate in false alarm per keyword per hour (fa/kw/hr).
‘We can see that with MMSHMM as secondary processor to
rescore putative events, the performance of keyword spot-
ter is improved. The Figure of Merit(FOM), which is the
average detection rate from 0 to 10 fa/kw/hr, is shown in
Table 2. The FOM improves from 60.4% (HMM) to 66.2%
(MMSHMM with 1 mixture), then to 70.2% (MMSHMM
with 3 mixtures).

HMM
60.4%

MMSHMM(K=1) | MMSHMM (K=3)
66.2% 70.2%

Table 2: FOM of HMM and MMSHMM

5. CONCLUSION

In this paper we presented a linear trajectory multiple mix-
ture segmental HMM. This model is evaluated on a TIMIT
phonetic classification task and a keyword spotting task.
Under both circumstances, it shows advantages over the
conventional HMM and gives performance comparable to
those reported by other groups. Of cause, it has its own
drawback, such as relatively expensive computation. How
to reduce this and still keep good performance would be
one of the future work. Moreover, modeling the dynamics
across the segments may also improve the performance of
current model.
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