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ABSTRACT

The generalized S transform (GST), a family of reversible integer-
to-integer transforms inspired by the S transform, is proposed.
This family of transforms is then studied in some detail. For ex-
ample, the relationship between the GST and lifting scheme is dis-
cussed, and the effects of choosing different GST parameters are
examined. Some examples of specific transforms in the GST fam-
ily are also given.

1. INTRODUCTION

Reversible integer-to-integer transforms have become a popular
tool for use in signal coding applications requiring lossless sig-
nal reproduction [1–6]. One of the best known transforms of this
type is the S transform [1–4]. In this paper, we propose the gener-
alized S transform (GST), a family of reversible integer-to-integer
transforms based on the key ideas behind the S transform. We then
study the GST in some detail. This leads to a number of interesting
insights about transforms belonging to the GST family, including
the S transform amongst others.

2. NOTATION AND TERMINOLOGY

Before proceeding further, a short digression concerning the nota-
tion and terminology used in this paper is appropriate. The sym-
bolsZ andR denote the sets of integer and real numbers, respec-
tively. Matrix and vector quantities are indicated using bold type.

The symbolIN is used to denote theN × N identity matrix.
In cases where the size of the identity matrix is clear from the
context, the subscriptN may be omitted. A matrixA is said to
be unimodular if|det A| = 1. The(i, j)th minor of theN × N
matrixA, denotedminor(A, i, j), is the(N−1)×(N−1) matrix
formed by removing theith row andjth column fromA.

For α ∈ R, the notationbαc denotes the largest integer not
more thanα (i.e., the floor function), and the notationdαe denotes
the smallest integer not less thanα (i.e., the ceiling function). The
symbolQ is used to denote a rounding operator. Such operators
are defined only in terms of a single scalar operand. As a notational
convenience, however, we use an expression of the formQ(x),
wherex is a vector/matrix quantity, to denote a vector/matrix for
which each element has had the operatorQ applied to it. In this
paper, all rounding operators are assumed to satisfy the identity

Q(x) = x for all x ∈ Z.

3. S TRANSFORM

One of the simplest and most ubiquitous reversible integer-to-integer
mappings is the S transform [1–4], a nonlinear approximation to a
particular normalization of the Walsh-Hadamard transform. The
S transform is also well known as the basic building block for
a reversible integer-to-integer version of the Haar wavelet trans-
form [3, 4]. The forward S transform maps the integer vector
[ x0 x1 ]T to the integer vector[ y0 y1 ]T , and is defined most fre-
quently (e.g., [3,4]) as

[ y0
y1 ] =

[
b 1

2
(x0+x1)c
x0−x1

]
.
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The corresponding inverse transform is given (e.g., in [3]) by

[ x0
x1 ] =

[
t

t−y1

]
, where t

4
= y0 + b 1

2
(y1 + 1)c. (1)

While the S transform can be viewed as exploiting the redun-
dancy between the sum and difference of two integers, namely that
both quantities have the same parity (i.e., evenness/oddness), this
overlooks a much more fundamental idea upon which the S trans-
form is based. That is, as noted by Calderbank et al. [2], the S
transform relies, at least in part, on lifting-based techniques.

4. GENERALIZED S TRANSFORM

By examining the S transform in the context of the lifting scheme,
we are inspired to propose a natural extension to this transform,
which we call the generalized S transform (GST). For convenience
in what follows, let us define two integer vectorsx andy as

x
4
= [ x0 x1 ... xN−1 ]T , y

4
= [ y0 y1 ... yN−1 ]T .

The forward GST is a mapping fromx to y of the form

y = Cx +Q ((B− I)Cx) , (2)

whereB is real matrix of the form

B
4
=


1 b1 b2 ... bN−1
0 1 0 ... 0
0 0 1 ... 0

...
...

...
...

...
0 0 0 ... 1

 ,
C is a unimodular integer matrix defined as

C
4
=


c0,0 c0,1 c0,2 ... c0,N−1
c1,0 c1,1 c1,2 ... c1,N−1
c2,0 c2,1 c2,2 ... c2,N−1

...
...

...
...

...
cN−1,0 cN−1,1 cN−1,2 ... cN−1,N−1

 ,
andQ is a rounding operator. By examining (2), one can easily
see that this transform maps integers to integers. In the absence of
the rounding operatorQ, the GST simply degenerates into a linear

transform with transfer matrixA, whereA
4
= BC. Thus, the

GST can be viewed as a reversible integer-to-integer mapping that
approximates the linear transform characterized by matrixA. The
inverse GST is given by

x = C−1 (y −Q ((B− I)y)) . (3)

Note thatC−1 is an integer matrix, since by assumptionC is a
unimodular integer matrix. To show that (3) is, in fact, the inverse
of (2), one need only observe that due to the form ofB, for any
twoN × 1 vectorsu andv:

v = u +Q ((B− I)u) (4)

implies
u = v −Q ((B− I)v) . (5)

By substitutingu = Cx andy = v into (4) and (5), we obtain (2)
and (3), respectively.



The GST can be realized using the networks shown in Figs. 1(a)
and 1(b). These networks share some similarities with those of the
lifting scheme as described in [2]. One difference, however, can
be attributed to the fact that we are dealing withN -inputN -output
networks, whereN is potentially larger than two. In such cases,
adjacent ladder steps that modify the same channel can be com-
bined, hence, reducing the number of rounding operations and the
resulting quantization error [1]. The specific strategy used to real-
ize the transformsC andC−1 is not particularly critical (from a
mathematical standpoint). Since both transforms are linear, each
has many equivalent realizations. These two transforms could be
implemented using ladder networks, but this is not necessary.

5. CHOICE OF ROUNDING OPERATOR

So far, we have made only one very mild assumption about the
rounding operatorQ. At this point, we now consider the conse-
quences of a further restriction. Suppose that the rounding opera-
torQ also satisfies

Q(x+ α) = x+Q(α) for all x ∈ Z, and allα ∈ R

(i.e.,Q is integer-shift invariant). The operatorQ could be chosen,
for example, as the floor function (i.e.,Q(x) = bxc), the ceiling
function (i.e.,Q(x) = dxe), or a biased floor or ceiling function
(i.e.,Q(x) = bx + 1

2
c or Q(x) = dx − 1

2
e). If Q is integer-

shift invariant, we trivially have the two identities shown in Fig. 2.
Therefore, in the case thatQ is integer-shift invariant, we can re-
draw each of the networks shown in Figs. 1(a) and 1(b) with the
rounding unit moved from the input-side to the output-side of the
adder. Mathematically, we can rewrite (2) and (3), respectively, as

y = Cx +Q ((B− I)Cx)

= Q (Cx + (B− I)Cx)

= Q (BCx) , (6)

x = C−1 (y −Q ((B− I)y))

= −C−1 (Q ((B− I)y)− y)

= −C−1Q ((B− I)y − y)

= −C−1Q ((B− 2I)y)

= −C−1Q
(
−B−1y

)
.

Or alternately, in the latter case, we can write

x = C−1Q′(B−1y)

where
Q′(α)

4
= −Q(−α).

At this point, we note thatQ andQ′ must be distinct (i.e., dif-
ferent) operators. This follows from the fact that a rounding op-
erator cannot both be integer-shift invariant and satisfyQ(α) =
−Q(−α) for all α ∈ R. (See Appendix A for a simple proof.) By
observing thatb−αc = −dαe for all α ∈ R, we have, for the case
of the floor and ceiling operations

Q′(x) =

{
dxe forQ(x) = bxc
bxc forQ(x) = dxe. (7)

The above results are particularly interesting. By examin-
ing (6), we can see that all GST-based approximations to a given

linear transform (with transform matrixA
4
= BC) are exactly

equivalent for a fixed choice ofQ (assuming, of course, thatQ is
integer-shift invariant). This helps to explain why so many equiv-
alent realizations of the (original) S transform are possible, as this
transform utilizes the floor operator which is integer-shift invari-
ant.
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Fig. 2. Transformations for an integer-shift invariant rounding op-
eratorQ (x ∈ Z, α ∈ R, y ∈ Z).

6. CALCULATION OF GST PARAMETERS

Suppose that we are given a linear transform characterized by the
transform matrixA, and we wish to find a reversible integer-to-
integer version of this transform based on the GST framework. In
order for this to be possible, we must be able to decomposeA as

A = BC (8)

where the matricesB and C are of the forms specified in (2).
Therefore, we wish to know which matrices have such a factor-
ization.

For convenience in what follows, let us define

A
4
=

 a0,0 a0,1 ... a0,N−1
a1,0 a1,1 ... a1,N−1

...
...

...
...

aN−1,0 aN−1,1 ... aN−1,N−1

 .
We assert that a factorization of the form of (8) exists if

1. A is unimodular,

2. minor(A, 0, i) is unimodular for some choice ofi, i ∈
{0, 1, . . . , N − 1}, and

3. ai,j ∈
{
R for i = 0, j = 0, 1, . . . , N − 1
Z for i = 1, 2, . . . , N − 1, j = 0, 1, . . . , N − 1.

To prove the above assertion, we begin by considering the
slightly more general decomposition

A = BDC (9)

whereB andC are defined as in (8), and

D
4
=


b0 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0

...
...

...
... 0

0 0 0 0 1

 .
A comparison of the left- and right-hand sides of (9) yields the
trivial relationships

ci,j = ai,j for i = 1, 2, . . . , N − 1, j = 0, 1, . . . , N − 1

and the nontrivial system of equations

a = bC

where

a
4
= [ a0,0 a0,1 ... a0,N−1 ] , b

4
= [ b0 b1 ... bN−1 ] .
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Fig. 1. Network realization of the generalized S transform. (a) Forward transform and (b) inverse transform.

If C is nonsingular, we can solve forb in terms ofa as

b = aC−1.

By considering the determinants of the various matrices in the
factorization, we can write

det A = det(BDC) = (det B)(det D)(det C) = b0 det C.

Therefore,b0 = (det A)(det C)−1. Consequently, we want to
chooseC such thatdet C = det A. In this case,b0 = 1, soD =
I, and we haveA = BDC = BC, a factorization of the desired

form. Letwi
4
= det minor(A, 0, i) for i = 0, 1, . . . , N−1. Using

the Laplacian expansion for the determinant ofC across row 0, we
obtain

det C =
∑N−1
i=0 (−1)ic0,iwi. (10)

By assumption,|wi| = 1 for somei, say i = κ. Suppose we
choose

c0,i =

{
(−1)κw−1

κ det A for i = κ
0 otherwise

(11)

for i = 0, 1, . . . , N − 1. Substituting (11) into (10), we obtain

det C =

N−1∑
i=0

(−1)ic0,iwi = (−1)2κwκw
−1
κ det A = det A,

which is the desired result. Therefore, we can use (11) to gen-
erate a valid choice forC, and knowingC, we can solve forb,
and hence findB. Thus, we have a constructive proof that the de-
sired factorization ofA exists. Moreover, the factorization is not
necessarily unique, since more than one choice may exist for the
{c0,i}N−1

i=0 above. In instances where the solution is not unique,
we can exploit this degree of freedom in order to minimize com-
putational complexity of the resulting transform realization.

In passing, we note that a more detailed examination of (10)
shows that the condition,|wi| = 1 for somei, is overly restric-
tive. It is only actually necessary that the{wi}N−1

i=0 not all share a
(nontrivial) common factor (i.e., are relatively prime). Clearly, this
condition is satisfied if one of thewi is either plus or minus one. In
practice, however, this more general result may only be of limited
utility, since the more general case ultimately leads to realizations
with greater computational complexity (in most cases).

In all likelihood, the most practically useful transforms in the
GST family are those for which the outputy0 is chosen to be a
rounded weighted average of the inputs{xi}N−1

i=0 (with the weights
summing to one) and the remaining outputs{yi}N−1

i=1 are chosen
to be any linearly independent set of differences formed from the
inputs{xi}N−1

i=0 . Such transforms are particularly useful when the
inputs{xi}N−1

i=0 tend to be highly correlated.

Obviously, there are many ways in which the above set of dif-
ferences can be chosen. Here, we note that two specific choices
facilitate a particularly computationally efficient and highly regu-
lar structure for the implementation ofC (andC−1). Suppose the
difference outputs are selected in one of two ways:

type 1: yi = xi − x0

type 2: yi = xi − xi−1

for i = 1, . . . , N − 1. Since these differences completely define
the lastN − 1 rows ofA, we can calculatedet minor(A, 0, 0).
Furthermore, one can easily verify that in both casesdet minor(A, 0, 0) =
1. Thus, we may chooseC for type-1 and type-2 systems, respec-
tively, as 

1 0 0 ... 0
−1 1 0 ... 0
−1 0 1 ... 0

...
...

...
... 0

−1 0 0 ... 1

 and


1 0 0 ... 0 0
−1 1 0 ... 0 0
0 −1 1 ... 0 0

...
...

...
... 0 0

0 0 0 ... −1 1

 .
Furthermore, we can show that the corresponding solutions forB
are, respectively, given by

type 1: bi = a0,i

type 2: bi =
∑N−1
k=i a0,k

for i = 1, 2, . . . , N − 1.
In the above cases, the transform matrices forC can be re-

alized using the ladder networks shown in Fig. 3. The forward
networks for type-1 and type-2 systems are shown in Figs. 3(a)
and (b), respectively. The corresponding inverse networks are not
shown, due to space constraints, but they are formed simply by re-
versing the order of the ladder steps, and removing the sign inver-
sion from the adder inputs. For each of the two system types, the
forward and inverse networks have the same computational com-
plexity (in terms of the number of arithmetic operations required).

Other choices of differences also facilitate computationally ef-
ficient implementations. Choices that yield aC matrix with all
ones on the diagonal are often good in this regard.

7. EXAMPLES

One member of the GST family is, of course, the S transform. We
can factor the transform matrixA asA = BC where

A =
[

1
2

1
2

1 −1

]
, B =

[
1

1
2

0 1

]
, C =

[
0 1
1 −1

]
=
[

1 0
−1 1

]
[ 0 1
1 0 ] .

The S transform is obtained by using the parameters from the
above factorization forA in the GST network in conjunction with
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Fig. 3. Networks for realizing particular forms of theC matrix.
The networks for (a) type-1 and (b) type-2 systems.

the rounding operatorQ(x) = bxc. Mathematically, this gives us

[ y0
y1 ] =

[
x1+b t

2
c

t

]
wheret = x0 − x1, and (12a)

[ x0
x1 ] = [ y1+s

s ] wheres = y0 − b y1
2
c. (12b)

Comparing (12b) to (1), we observe that the computational com-
plexity of the former expression is lower (i.e., one less addition is
required). Due to our previous results, however, we know that both
equations are mathematically equivalent. Thus, we have found a
lower complexity implementation of the inverse S transform.

Another example of a transform from the GST family is the
reversible color transform (RCT), defined in the JPEG-2000 draft
standard [5] (and differing only in minor details from a transform
described in [6]). Again, we can factor the transform matrixA as
A = BC where

A =

[ 1
4

1
2

1
4

0 −1 1
1 −1 0

]
, B =

[
1

1
4

1
4

0 1 0
0 0 1

]
,

C =
[

0 1 0
0 −1 1
1 −1 0

]
=
[

1 0 0
−1 1 0
0 0 1

] [
1 0 0
0 1 0
−1 0 1

] [
0 1 0
0 0 1
1 0 0

]
.

The RCT is obtained by using the parameters from the above fac-
torization forA in the GST network in conjunction with the round-
ing operatorQ(x) = bxc. Mathematically, this gives us[ y0

y1
y2

]
=

[
x1+b 1

4
(t0+t1)c
t0
t1

]
where t0=x2−x1

t1=x0−x1
, and (13a)[ x0

x1
x2

]
=
[
s+y2
s

s+y1

]
wheres = y0 − b 1

4
(y1 + y2)c. (13b)

The formula given for the forward RCT in [5] (see equations G.3–
G.5) is [ y0

y1
y2

]
=

[
b 1

4
(x0+2x1+x2)c
x2−x1
x0−x1

]
. (14)

By comparing (13a) and (14), we observe that the computational
complexity of the former expression is lower (i.e., 4 adds and
1 shift are required instead of, say, 4 adds and 2 shifts). Thus,
we have found a lower complexity implementation of the forward
RCT. Although the computational complexity is reduced by only
one operation, this savings is very significant in relative terms
(since only six operations were required before the reduction).

Recall that for integer-shift invariant rounding operators, mul-
tiple realization strategies often exist for a particular GST-based re-
versible integer-to-integer transform. In order to demonstrate this,
we now derive an alternative implementation of the RCT. To do
this, we factor the transform matrix associated with the RCT (i.e.,
the matrixA from above) asA = BC where

B =

[
1
−3
4

1
4

0 1 0
0 0 1

]
,

C =
[

0 0 1
0 −1 1
1 −1 0

]
=
[

1 0 0
0 −1 0
0 0 1

] [
1 0 0
−1 1 0
0 0 1

] [
1 0 0
0 1 0
0 −1 1

] [
0 0 1
0 1 0
1 0 0

]
.

The corresponding RCT implementation is given by[ y0
y1
y2

]
=

[
x2+b 1

4
(−3t0+t1)c
t0
t1

]
where t0=x2−x1

t1=x0−x1
, and[ x0

x1
x2

]
=
[
s0+y2
s0
s1

]
where

s0=s1−y1

s1=y0−b
1
4

(−3y1+y2)c .

One can see that the computational complexity of this alternative
implementation is higher than the one proposed in (13). In fact,
due to the simple nature of the RCT, the implementation given
by (13) is probably the most efficient.

8. CONCLUSIONS

The generalized S transform (GST), a family of reversible integer-
to-integer transforms, was proposed. Then, the GST was studied
in some detail, leading to a number of interesting results. First, we
proved that all GST-based approximations to a given linear trans-
form employing the same integer-shift invariant rounding operator
Q are equivalent. We also showed that the S transform and RCT
are specific instances of the GST. Lower complexity implementa-
tions of the S transform and RCT were also suggested. Due to the
utility of the GST, this family of transforms will no doubt continue
to prove useful in both present and future signal coding applica-
tions.

A. PROOFS

Lemma A.1. A rounding operatorQ that is integer-shift invari-
ant cannot also possess the antisymmetry property (i.e.,Q(α) =
−Q(−α) for all α ∈ R).

Proof. Consider the quantityQ( 1
2
). Using trivial algebraic ma-

nipulation and the integer-shift invariance property, we have

Q( 1
2
) = Q(1− 1

2
) = 1 +Q(− 1

2
). (16)

From the antisymmetry property, we can write

Q( 1
2
) = −Q(− 1

2
). (17)

Combining (16) and (17), we obtain

1 +Q(− 1
2
) = −Q(− 1

2
)⇒ Q(− 1

2
) = 1

2
.

Thus, we have thatQ( 1
2
) /∈ Z. Since, by definition,Qmust always

yield an integer result, the integer-shift invariance and antisymme-
try properties cannot be simultaneously satisfied byQ.
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