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ABSTRACT

The generalized S transform (GST), a family of reversible integer-
to-integer transforms inspired by the S transform, is proposed.
This family of transforms is then studied in some detail. For ex-
ample, the relationship between the GST and lifting scheme is dis-
cussed, and the effects of choosing different GST parameters ar
examined. Some examples of specific transforms in the GST fam-
ily are also given.

1. INTRODUCTION

Reversible integer-to-integer transforms have become a popular

tool for use in signal coding applications requiring lossless sig-
nal reproduction [1-6]. One of the best known transforms of this
type is the S transform [1-4]. In this paper, we propose the gener-
alized S transform (GST), a family of reversible integer-to-integer
transforms based on the key ideas behind the S transform. We the
study the GST in some detail. This leads to a number of interesting
insights about transforms belonging to the GST family, including
the S transform amongst others.

2. NOTATION AND TERMINOLOGY

Before proceeding further, a short digression concerning the nota-

tion and terminology used in this paper is appropriate. The sym-
bolsZ andR denote the sets of integer and real numbers, respec-
tively. Matrix and vector quantities are indicated using bold type.
The symboll y is used to denote thy x N identity matrix.
In cases where the size of the identity matrix is clear from the
context, the subscripmay be omitted. A matribA is said to
be unimodular ifildet A| = 1. The (7, j)th minor of theN x N
matrix A, denotedninor(A, 4, j), isthe(N —1) x (N —1) matrix
formed by removing théth row andjth column fromA..
Fora € R, the notation|«| denotes the largest integer not
more tham (i.e., the floor function), and the notatidon| denotes
the smallest integer not less thar{i.e., the ceiling function). The
symbol 9 is used to denote a rounding operator. Such operators
are defined only in terms of a single scalar operand. As a notational
convenience, however, we use an expression of the 1@(mx),
wherex is a vector/matrix quantity, to denote a vector/matrix for
which each element has had the opera@applied to it. In this
paper, all rounding operators are assumed to satisfy the identity

Q(z) ==z forallz € Z.

3. S TRANSFORM

One of the simplest and most ubiquitous reversible integer-to-integer

mappings is the S transform [1-4], a nonlinear approximation to a
particular normalization of the Walsh-Hadamard transform. The
S transform is also well known as the basic building block for
a reversible integer-to-integer version of the Haar wavelet trans-
form [3,4]. The forward S transform maps the integer vector

[=0 =1]" to the integer vectofvo v1]”, and is defined most fre-
quently (e.g., [3,4]) as
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The corresponding inverse transform is given (e.g., in [3]) by
o1 —
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While the S transform can be viewed as exploiting the redun-
ancy between the sum and difference of two integers, namely that
oth quantities have the same parity (i.e., evenness/oddness), this

overlooks a much more fundamental idea upon which the S trans-
form is based. That is, as noted by Calderbank et al. [2], the S
transform relies, at least in part, on lifting-based techniques.
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], wheret 2 yo+ [L(ya +1)).

4. GENERALIZED S TRANSFORM

By examining the S transform in the context of the lifting scheme,
we are inspired to propose a natural extension to this transform,
which we call the generalized S transform (GST). For convenience

Ij]n what follows, let us define two integer vectorandy as

xé [Io z1 ... zN—l]T7 y 2 [yo Y1 - nyl]T,

The forward GST is a mapping frosato y of the form

y=Cx+ 9 ((B-I)Cx), )

whereB is real matrix of the form
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C is a unimodular integer matrix defined as
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and Q is a rounding operator. By examining (2), one can easily
see that this transform maps integers to integers. In the absence of
the rounding operata®, the GST simply degenerates into a linear

transform with transfer matriXA, where A 2 BC. Thus, the
GST can be viewed as a reversible integer-to-integer mapping that
approximates the linear transform characterized by ma#riXhe
inverse GST is given by

x=C"'(y - Q((B-1Dy)). ®3)
Note thatC ™ is an integer maitrix, since by assumptiGhis a
unimodular integer matrix. To show that (3) is, in fact, the inverse
of (2), one need only observe that due to the fornBoffor any
two N x 1 vectorsu andv:

v=u+Q((B-TIu) @)
implies

u=v—-9((B-I)v). (5)
By substitutingu = Cx andy = v into (4) and (5), we obtain (2)
and (3), respectively.



The GST can be realized using the networks shown in Figs. 1(a)
and 1(b). These networks share some similarities with those of the
lifting scheme as described in [2]. One difference, however, can
be attributed to the fact that we are dealing wihinput NV-output
networks, whereV is potentially larger than two. In such cases,
adjacent ladder steps that modify the same channel can be com-
bined, hence, reducing the number of rounding operations and the
resulting quantization error [1]. The specific strategy used to real-

ize the transform& andC ™ is not particularly critical (from a
mathematical standpoint). Since both transforms are linear, each
has many equivalent realizations. These two transforms could be
implemented using ladder networks, but this is not necessary.

5. CHOICE OF ROUNDING OPERATOR . . . s . .
. . Fig. 2. Transformations for an integer-shift invariant rounding op-
So far, we have made only one very mild assumption about the eratorQ (» € Z, o € R, y € Z).

rounding operato©. At this point, we now consider the conse-
qguences of a further restriction. Suppose that the rounding opera-
tor Q also satisfies

6. CALCULATION OF GST PARAMETERS

Suppose that we are given a linear transform characterized by the
transform matrixA, and we wish to find a reversible integer-to-
integer version of this transform based on the GST framework. In
order for this to be possible, we must be able to decompoas

Qz+a)=z+ Qo) forallz €Z,andalla € R

(i.e., Q is integer-shift invariant). The operat@ could be chosen,
for example, as the floor function (i.2(x) = |z]), the ceiling
function (i.e.,Q(z) = [z]), or a biased floor or ceiling function
(ie, Q) = |z + 3] or Q(z) = [z — 37). If Qis integer- A = BC (8)
shift invariant, we trivially have the two identities shown in Fig. 2.

Therefore, in the case th& is integer-shift invariant, we can re-  where the matrice® and C are of the forms specified in (2).
draw each of the networks shown in Figs. 1(a) and 1(b) with the Therefore, we wish to know which matrices have such a factor-
rounding unit moved from the input-side to the output-side of the ization.

adder. Mathematically, we can rewrite (2) and (3), respectively, as For convenience in what follows, let us define

y=Cx+Q((B-DCx) JTas @ noaan
=9 (Cx+ (B -I)Cx) A= - .
= Q(BCx), (6) AN 1.0 AN 14 . aN_TN_1

We assert that a factorization of the form of (8) exists if

-1
x=C ' (y - Q((B-1y)) 1. A is unimodular,

_ -1
=-C  ((B-1y)-y) 2. minor(A,0,4) is unimodular for some choice af i €
=-C'Q(B-Dy-y) {0,1,...,N — 1}, and
=-C'Q((B-2Dy) 3 a"E{R fori=0,7=0,1,...,N—1
. 1,7 ; _ y — —_
_ 70719(7]371},). z fori=1,2,...,N—-1,7=0,1,...,N — 1.
) ) To prove the above assertion, we begin by considering the
Or alternately, in the latter case, we can write slightly more general decomposition
x=C Q' (B 'y) A =BDC 9)
where whereB andC are defined as in (8), and
/ A
() = -Q=a). b 00 ... 0
At this point, we note that and Q' must be distinct (i.e., dif- Al 98590
ferent) operators. This follows from the fact that a rounding op- D= :
erator cannot both be integer-shift invariant and sat@fy.) = T
—Q(—a) forall « € R. (See Appendix A for a simple proof.) By 00001
observing that —a] = —[a] foralla € R, we have, for the case comparison of the left- and right-hand sides of (9) yields the

of the floor and ceiling operations trivial relationships

Ql(x):{m ;gigggi% @ cij=ai; fori=1,2.. N—1,j=0,1,...,N—1

~ The above results are particularly interesting. By examin-
ing (6), we can see that all GST-based approximations to a given a—=bC

linear transform (with transform matriA = BC) are exactly
equivalent for a fixed choice a (assuming, of course, th@ is
integer-shift invariant). This helps to explain why so many equiv- \where
alent realizations of the (original) S transform are possible, as this

transform utilizes the floor operator which is integer-shift invari- A
ant. a= [a010 ag,1 - A0, N—1 ] , b

and the nontrivial system of equations
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Fig. 1. Network realization of the generalized S transform. (a) Forward transform and (b) inverse transform.

If C is nonsingular, we can solve forin terms ofa as Obviously, there are many ways in which the above set of dif-
ferences can be chosen. Here, we note that two specific choices
b=aC™'. facilitate a particularly computationally efficient and highly regu-

A . . . . lar structure for the implementation 6f (andC~!). Suppose the
By considering the determinants of the various matrices in the gjfference outputs are selected in one of two ways:

factorization, we can write

det A = det(BDC) = (det B)(det D)(det C) = by det C. type 1. yi = 2 — o
type 2: Yi = Ti — Ti—1
Therefore,by = (det A)(det C)~*. Consequently, we want to
chooseC such thaddet C = det A.. In this casebo = 1, soD = fori = 1,..., N — 1. Since these differences completely define
I, and we haveA = BDC = BC, a factorization of the desired  the lastN — 1 rows of A, we can calculatelet minor(A, 0,0).

form. Letw; 2 det minor%A, 0,i)fori =0,1,..., N—1. Using Furthermore, one can easily verify that in both cakganinor(A, 0,0) =
the Laplacian expansion for the determinan€bécross row 0, we 1. Thus, we may choos€ for type-1 and type-2 systems, respec-

obtain N1 _ tively, as
detC => """ (—=1)"co,iw;. 10
) ¢ 2izo (~1)'eow (10 100..0 1 00.. 00
By assumption)w;| = 1 for somei, sayi = k. Suppose we “ilo.. 0 Lo 00
choose ) B and -
_J(=D"w; det A fori==k Dol
Coi = {o " otherwise (11) C166 .08 6 66 .0 9
fori =0,1,...,N — 1. Substituting (11) into (10), we obtain Furthermore, we can show that the corresponding solutionB for
N1 are, respectively, given by
det C =Y (=1)'co.iwi = (—1)* wew, ' det A = det A, type 1: b; = ao.,
1=0
o , type2: by =Y r . aok
which is the desired result. Therefore, we can use (11) to gen-
erate a valid choice fo€, and knowingC, we can solve fob, fori=1,2,...,N—1.
and hence f|n£ ThUS, we haVe a ConStructive prOOf that the de' In the above cases, the transform matrices@ocan be re-

sired factorization ofA exists. Moreover, the factorization is not  ajized using the ladder networks shown in Fig. 3. The forward

necessarily unique, since more than one choice may exist for thenetworks for type-1 and type-2 systems are shown in Figs. 3(a)
{coﬂ-}f.v:?)l above. In instances where the solution is not unique, and (b), respectively. The corresponding inverse networks are not
we can exploit this degree of freedom in order to minimize com- shown, due to space constraints, but they are formed simply by re-

putational complexity of the resulting transform realization. versing the order of the ladder steps, and removing the sign inver-
In passing, we note that a more detailed examination of (10) sion from the adder inputs. For each of the two system types, the

shows that the conditiorjw;| = 1 for somei, is overly restric- forward and inverse networks have the same computational com-

tive. Itis only actually necessary that the; } ¥ 5' not all share a plexity (in terms of the number of arithmetic operations required).

(nontrivial) common factor (i.e., are relatively prime). Clearly, this fici Otther <|:hoice? ct)f differce:rrl]ces alstcr)] f?ci!itialcttt;con}putat_itc;]nalllly ef-
condition is satisfied if one of the; is either plus or minus oné. In ~ Ti¢l€N Imtﬂ er&jen a |0|ns. A oices q a 3;:? m% rx with a
practice, however, this more general result may only be of limited ©N€S On the diagonal are oiten good In this regard.
utility, since the more general case ultimately leads to realizations
with greater computational complexity (in most cases). 7. EXAMPLES

In all likelihood, the most practically useful transforms in the  One member of the GST family is, of course, the S transform. We
GST family are those for which the outpys$ is chosen to be a  can factor the transform matriX asA = BC where
rounded weighted average of the inp{tts}f’:‘ol (with the weights L )
summing to one) and the remaining outp{its} Y ' are chosen A = {5 3 } , B= [1 5] o C=[04]=149]198].
to be any linearly independent set of differences formed from the 1t 01
inputs{z:};,"'. Such transforms are particularly useful whenthe The s transform is obtained by using the parameters from the
inputs{z;} ;" tend to be highly correlated. above factorization foA in the GST network in conjunction with

=Oo
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Fig. 3. Networks for realizing particular forms of th& matrix.
The networks for (a) type-1 and (b) type-2 systems.

the rounding operato@(z)
[47] (12a)
[a7] = ["7*] wheres = yo — [ % ]. (12b)

Comparing (12b) to (1), we observe that the computational com-

plexity of the former expression is lower (i.e., one less addition is
required). Due to our previous results, however, we know that both

|z |. Mathematically, this gives us

t
[zﬁtlﬂ] wheret = z9 — 1, and

equations are mathematically equivalent. Thus, we have found a

lower complexity implementation of the inverse S transform.
Another example of a transform from the GST family is the

reversible color transform (RCT), defined in the JPEG-2000 draft

standard [5] (and differing only in minor details from a transform

described in [6]). Again, we can factor the transform matxias
A = BC where
1
| == liig)
0

[SISYSTe
—HOR|—

010 100 1 0077010
C=|0-11|=]|-110 010 001].
1-10 001 -101 100

The RCT is obtained by using the parameters from the above fac-

torization forA in the GST network in conjunction with the round-
ing operatorQ(z) = |«]. Mathematically, this gives us

1

vol | =1+lz(to+t1)] to=wy—x

2] —[ " ]Wheref?:ﬁ*ﬁ’a”d (e
zol S+Sy2 _ 1

2] = [57] wneres =30~ Liwn ). a3

The formula given for the forward RCT in [5] (see equations G.3—

T )

By comparing (13a) and (14), we observe that the computational
complexity of the former expression is lower (i.e., 4 adds and
1 shift are required instead of, say, 4 adds and 2 shifts). Thus,
we have found a lower complexity implementation of the forward
RCT. Although the computational complexity is reduced by only
one operation, this savings is very significant in relative terms
(since only six operations were required before the reduction).

Recall that for integer-shift invariant rounding operators, mul-
tiple realization strategies often exist for a particular GST-based re-
versible integer-to-integer transform. In order to demonstrate this,
we now derive an alternative implementation of the RCT. To do
this, we factor the transform matrix associated with the RCT (i.e.,
the matrixA from above) asA = BC where

B:[;
0

1

1
L7 (zo+2z1+w2)]
To—T1
To—=1

Yo
1

E
Y2

(14)

=3
4
1
0

i=]=]

.

=
O

J=1

OO
o'o

The corresponding RCT implementation is given by

[#]-] }
)= [ 5] wher

One can see that the computational complexity of this alternative
implementation is higher than the one proposed in (13). In fact,
due to the simple nature of the RCT, the implementation given
by (13) is probably the most efficient.

1
za+| 7 (—3to+t1)]
to
ty
s0+y2

50
S1

Yo

1 where ©0=%27%1  gnd

ty=wg—x1

xo
x1
2

so=s1-v1
s1=yo— L7 (—3y1+w2)]"

8. CONCLUSIONS

The generalized S transform (GST), a family of reversible integer-

to-integer transforms, was proposed. Then, the GST was studied
in some detail, leading to a number of interesting results. First, we

proved that all GST-based approximations to a given linear trans-
form employing the same integer-shift invariant rounding operator

Q are equivalent. We also showed that the S transform and RCT
are specific instances of the GST. Lower complexity implementa-

tions of the S transform and RCT were also suggested. Due to the
utility of the GST, this family of transforms will no doubt continue

to prove useful in both present and future signal coding applica-

tions.

A. PROOFS

Lemma A.1. A rounding operatorQ that is integer-shift invari-
ant cannot also possess the antisymmetry property @&x) =

—Q(—a) forall a € R).

Proof. Consider the quantitQ(%). Using trivial algebraic ma-
nipulation and the integer-shift invariance property, we have

od)=001-3)=1+9(-2). (16)
From the antisymmetry property, we can write
Q(3) = —Q(—3) (17)
Combining (16) and (17), we obtain
1+ Q(-3)=-Q(-3) = 2(-3) =3

Thus, we have tha®(3) ¢ Z. Since, by definition@ must always
yield an integer result, the integer-shift invariance and antisymme-
try properties cannot be simultaneously satisfiedhy
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