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ABSTRACT

The design of optimal DMT transceiversfor distorted chan-
nel with colored noise has been of great interest. Of par-
ticular interest is the class of block based DMT (BDMT),
where the transmitter and the receiver consist of constant
meatrices. For a given channel and channel noise spectrum,
the optimal DBMT transceiver that minimizesthe transmis-
sion power for afixed probability of error and transmission
rate will be derived. The optimal biorthogonal transmitter
isin fact orthogonal. That is, there is no loss of generality
in using the orthogona transmitter for the design optimal
BDMT.

1. INTRODUCTION

There has been great interest in the design of DMT sys-
temsrecently. Fig. 1 showsan example of an M -band DMT
transceiver over channel C'(z) with additivenoisev(n). The
exampleis the so-called block based DMT (BDMT), where
the transmitter and the receiver consist of constant matrices.
The encoding at the transmitter end and the decoding at the
receiver end are doneblockwise. TheDMT is called orthog-
onal if the transmitter G in Fig. 1 is an orthogonal matrix,
i.e, GI'Gg isadiagona matrix. We call it biorthogonal if
Gy isnot orthogonal. When the receiver outputs are identi-
cal to the transmitter inputsin the absence of channel noise,
the transceiver issaid to be |9 free.

BDMT transceivers have been studied extensively. In the
commonly used DFT based DMT, the transmitter and the
receiver are DFT matrices [1]. In [2], more generd or-
thogonal matrices are proposed. It is shown therein that,
for AWGN (additive white Gaussian noise) frequency se-
lective channels the optimal orthogonal transmitter consists
of eigen vectors associated with the channel. In [3], opti-
mal transceivers that minimize the total output noise power
are developed. Information rate optimized DMT systems
are considered in [4]. In [5], for a given distorted channel
with colored noise the authors derive the optimal orthogo-
nal transceiver that minimizes the transmission power for a
fixed probability of error and transmission hit rate.
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Typical of DMT transmittersisthe introduction of redun-
dancy so that the receiver can cancel ISl dueto the channel.
Cyclic prefix, zero padding (or trailing zeros) and leading
zeros are commonly used forms of redundancy. For exam-
ple, cyclic prefix is used in DFT based DMT systems [1]
and zero padding is considered in [2]-[5]. We will consider
BDMT systems of trailing zeros only. In this paper, we will
show that for any given transmission rate and probability of
error, the optimal biorthogonal transceiver that minimizes
the transmission power is orthogonal.

2. 1S FREE BDMT WITH ZERO PADDING [3/4]

Consider Fig. 1, wherean M -band BDMT system is shown.
Usually the channel is modeled as an LTI filter C'(z) with
additive noise v(n). Assumethat v(n) isazero-mean WSS
process and C'(z) is an FIR filter of order L (a reasonable
assumption after time domain equalization). So

Clz)=co+crz '+ + crz L,
with nonzero ¢y and ¢y,. The length of redundant samples
is chosen to be L so that the receiver can remove |SI due to
C(z) and decoding can be performed blockwise. Therefore
theinterpolationratio N isN = M + L. Inthe case of zero
padding, the transmitter is of the form,

0= ().

where G is M by M. Using this choice of G, Fig. 1 can
be redrawn as Fig. 2. The N by M matrix C is a lower
triangular Toeplitz matrix whose first column is given by
[cocr ... cp 0...0]7. The N x 1 vector v shown in
Fig. 2 is the blocked version of the scalar noise process
v(n). Using SVD, we decompose the channel matrix C

Cc= (U, U) <ﬁ> V=U <ﬁ> Vv, (1)
U

where U and V are orthonormal matrices of dimensions
respectively N x N and M x M,and A isan M x M di-
agonal matrix. The biorthogonal DMT transceiverswith ISl
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Figure 1: An M-band BDMT transceiver over channel C(z) with noise v(n).
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Figure 2: Matrix representation of the zero padded BDMT
transceiver.

free property can be completely parameterized, as described
in the following theorem.

Theorem 1 [3,4] The BDMT system with trailing zeros in
Fig. 1is19 free if and only if the zero-padded transceiver
satisfies the followings:

(i) Gisan M x M nonsingular matrix;

(i) S = G 'B,where B = VA [T AJU7, for arbi-
trary M x L matrix A.

3. PROBLEM FORMULATION

In this paper, we assume that the inputs z;, are PAM sym-
bols of b;, bits. Without much loss of generality, we further
assume that z;, have zero mean and they are uncorrelated
witheach other. Thatis, £ [z ] = 02, 6(k—m). Thiscan
always be obtained with proper interleaving. The average
bit rate per symbol in this case becomesb = - i”:f)l b

The transmission power P is the average energy of the
vectory = (yo u1 yN_l)T as shown in Fig. 1,
P=% 22/[:31 oy . Astheinputs z;, are uncorrelated and

. . M-1
have zero mean, o2, isgivenby o7, = > '[GI;, 02

n=0 knYx,*

Using this expression, we can write the transmission power

Under the I1SI free condition, for a fixed bit rate and a
fixed probability of error P., we will find the transceiver
that minimizes the transmission power. The optimization
processinvolves 2 steps. We will show in section 4 that the
bits b;, can be optimally allocated to minimize the transmis-
sion power for any given transceiver. Under the optimal bit
alocation, the optimal transceiver will then be derived.

4. OPTIMAL BIT ALLOCATION

For a given transceiver, a fixed probability of error P, and
average bit rate per input symbol b, we present the optimal
bit allocation {b } M5! withd = L S ! b, such that the
transmission power in (2) is minimized.

At the receiver end, the output of the k-th bandisz =
x, + eg, where e;, comes entirely from channel noise asthe
transceiver achieves zero |Sl. Definethe M x 1 output noise
vector ase = (60 e1 eM_l)T, thene = Sv =
G~ 'Bv.

Assuming the PAM symbols of the k-th band carry by,
bits, the probability of error for the k-th band is given

by P.(k) = 2(1 —27%)Q %) . For a fixed
probability of error P, across al bands, we need to have
P.(0) = P,(1) =--- = P.(M — 1) = P.. Under the high
bit rate assumption 2°* — 1 ~ 2%, we can seethat o2, and
ol satisfy

Tk

1
o2 =c2*g? | where c¢= 3 (@' {Pe/Q})z. (3

Using thisrelation and applying the AM-GM inequality, the



transmission power in (2) satisfies

CM 22b H

The equality holds if and only if 22%02 ||g||3 are the
same for all k. Notice that P,,: i depends only on b
and o7 ||gx||3, where o2, is determined once the receiver
is known and ||gx||3 is determined once the transmitter is
given. Therefore when the transceiver is given and average
bit rate per symbol b is fixed, P,p i is the lower bound
of the transmission power independent of the bit allocation
{br} 275" Solving for the optimal by, we have

1/M A

2 gell3) " = Poprpie- (4)

1 _
b, = b —logy (e, lgkl|2) + 77 10z (755 e, gl =) -
©)
The optimal bit alocation equalizes the terms

2%%52 ||gk||3.  When the transmitting vectors g
have egual energy, we can see that more bits are assigned
to bands where o2, is small. This is similar to the bit
allocation in water filling scheme. More bits are transmitted
in less noisy bands.

5. OPTIMAL TRANSCEIVERS

Optimal G: We first express the quantity P,p: i in (4)
in terms of G. The energy of the k-th column of G is
llgxll3 = [GTG],,. Letq = By, thene = G 'q. The
M x M autocorrelation matrix R, of the noise vector e is
givenby R, = SR, ST = G'R,G~T, where R, isthe
autocorrelation matrix of the vector q. The output noiseo ?,
of the k-th band isequal to [R]x or [GT'R,G~"],,. So
(4) can be rewritten as
M1 1/M

M .
Popt pit = CNQ% < H [GTG]kk

k=0

[GT'R,G ] kk)

Apply the Hadamard inequality, we have

v

Popi pit 0%2% (det (GTG) det (G’quG’T))l/ M

M
= 2% (det Ry) Y 2

The equality holds if and only if (i) G”'G is diagonal and
(i) G 'R,G T isdiagonal. The lower bound P, i,
does not depend on the transmitter G and it is achieved if
and only if G satisfies both conditions (i) and (ii). Let the
Schur decomposition of R, be

R, = QEQT-

Then these 2 conditions can be satisfied by choosing G =
Q. Theoptimal transmitter G is orthogonal. In this case the

opt,bit,G (6)

receiver that achieves 1Sl isgiven by S = QTB, where B
isgivenin Theorem 1.

Optimal A: From (6), we seethat givenany A, the achiev-
able lower bound Py pir,c = cX2%(det R,)V/M. The
matrix A should be chosen such that det(R,) is mini-
mized. Using the facts that R, = BR,B” and B =
VTA I AJUT, we get
-2 T I

det(R,) = det(A~?) det ([T AJUTR, U <AT>)' )
Note that A, U and R, are fixed once the channel and
input noise are given. Thus the optimal A is such that
det([I AJUTR,U[L A]T) is minimized. The optimal A
has the following closed form expression (Readers are re-
ferred to [6] for detailed derivation).

A=-UTR,U, (UTR,U;) ", ®)

where the matrices U, and U, aredefined in (1). The min-
imum achievable det(R) is

det(A~?) det(R,)/ det(UTR,U,).

Using this expression and (6), the minimum transmission

power for the optimal transceiver is

1/M

e M M [det(A?)det(R,)
N | det(UTR,Uy)

©)

Pbiortho -

Summarizing the results, we have

Theorem 2 Consider the zero padded M -band DMT sys-
temin Fig. 2. Assume that the inputs are PAM symbols
of b, bits. For any fixed probability of error P, and any
fixed transmission bit rate per symbol b, the biorthogonal
transceiver is1S free and minimizesthe transmission power
Pin(2) if and only if the following are true:

(i) The matrix A is given by A =
~U!R,U, (UTR,U;)"", where R, is the au-
tocorrelation matrix of the noise vector v and, Uy and
U, areasdefinedin (1).

(if) The transmitter G = Q, where Q is the orthonor-
mal matrix such that Q”R,Q is diagonal. The ma-
trix R, is given by R, = BR,B?, where B =
VTA™I AJUT. Thereceiver isgivenby S = Q”B.

(i) Thebitsby areallocatedasbk = b—log, (e, ||8kl2)+
&= 10g2 (H —0 0e2||gz|| )

The minimum transmission power iS Py;ortho givenin (9)



Example. In this example we compare the transmission
power of the derived optimal transceiver Py;ortno, that of
the orthogonal transceiver derivedin [S] P, ho,[5)" and that
of the vector coding transceiver derived in [2] ve[2)" The
closed form expressions of P 5 and Pm[z] are de-

ortho,
rived in [6]. The channel C'(z) and power spectrum for
the colored noise v(n) used in this example are showed in
Fig. 3(a) and (b). These parameters are obtained from atyp-
ical ADSL environment. The channel C'(z) in this case has
order L = 4. The bit error rate P, = 10~% and average
bit rate per sampleis R, = %b = 2. Theresults are plot-
ted for M = 10 to 50 and they are showed in Fig. 4. One
can see that the improvement of Py;o¢0 OVEr Pm«tho,[S] is
more significant when M is small. When M is large, the
two curves converge. AlSO Pyiortno 1S @pproximately 5 dB
smaller than P, o,. In the plot we see that Py;ortno and
P . ho,[5] appear’to be monotone decreasing. It is the au-
thors' conjecture that Py;iorno and P, ho,[5] &€ monotone
decreasing functions of M.

0

-0.5r

1t

(@)

channel freq. resp. (dB)

. . . .
0.2 0.4 0.6 0.8 1

(b)

noise power spectrum (dB)

. . . .
0.2 0.4 0.6 0.8 1
frequency normalized by Tt

Figure 3. (a) The frequency response of the channel
|C(e“)|. (b) The power spectrum of the channel noise

v(n).

6. CONCLUDING REMARKS

In this paper we show that, for the design of BDMT sys-
tems, there is no loss of generality in using orthogonal

transmission power (dBm)

Figure 4. Performance comparison of Pyiorthos Py, 5
and P [2]

ve

transceivers. The M-band DMT system is often considered
as the dua of an M -band subband coder. The BDMT sys-
tem can be considered as the dual of the transform coder.
Theresult shown in this paper is similar to the result in sub-
band coding theory that optimal orthogonal transform coder
is as good as any biorthogonal transform coder [7].
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