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ABSTRACT

The design of optimal DMT transceivers for distorted chan-
nel with colored noise has been of great interest. Of par-
ticular interest is the class of block based DMT (BDMT),
where the transmitter and the receiver consist of constant
matrices. For a given channel and channel noise spectrum,
the optimal DBMT transceiver that minimizes the transmis-
sion power for a fixed probability of error and transmission
rate will be derived. The optimal biorthogonal transmitter
is in fact orthogonal. That is, there is no loss of generality
in using the orthogonal transmitter for the design optimal
BDMT.

1. INTRODUCTION

There has been great interest in the design of DMT sys-
tems recently. Fig. 1 shows an example of anM -band DMT
transceiver over channelC(z) with additive noise �(n). The
example is the so-called block based DMT (BDMT), where
the transmitter and the receiver consist of constant matrices.
The encoding at the transmitter end and the decoding at the
receiver end are done blockwise. The DMT is called orthog-
onal if the transmitterG0 in Fig. 1 is an orthogonal matrix,
i.e., GT

0G0 is a diagonal matrix. We call it biorthogonal if
G0 is not orthogonal. When the receiver outputs are identi-
cal to the transmitter inputs in the absence of channel noise,
the transceiver is said to be ISI free.

BDMT transceivers have been studied extensively. In the
commonly used DFT based DMT, the transmitter and the
receiver are DFT matrices [1]. In [2], more general or-
thogonal matrices are proposed. It is shown therein that,
for AWGN (additive white Gaussian noise) frequency se-
lective channels the optimal orthogonal transmitter consists
of eigen vectors associated with the channel. In [3], opti-
mal transceivers that minimize the total output noise power
are developed. Information rate optimized DMT systems
are considered in [4]. In [5], for a given distorted channel
with colored noise the authors derive the optimal orthogo-
nal transceiver that minimizes the transmission power for a
fixed probability of error and transmission bit rate.
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Typical of DMT transmitters is the introduction of redun-
dancy so that the receiver can cancel ISI due to the channel.
Cyclic prefix, zero padding (or trailing zeros) and leading
zeros are commonly used forms of redundancy. For exam-
ple, cyclic prefix is used in DFT based DMT systems [1]
and zero padding is considered in [2]-[5]. We will consider
BDMT systems of trailing zeros only. In this paper, we will
show that for any given transmission rate and probability of
error, the optimal biorthogonal transceiver that minimizes
the transmission power is orthogonal.

2. ISI FREE BDMT WITH ZERO PADDING [3,4]

Consider Fig. 1, where anM -band BDMT system is shown.
Usually the channel is modeled as an LTI filter C(z) with
additive noise �(n). Assume that �(n) is a zero-mean WSS
process and C(z) is an FIR filter of order L (a reasonable
assumption after time domain equalization). So

C(z) = c0 + c1z
�1 + � � �+ cLz

�L;

with nonzero c0 and cL. The length of redundant samples
is chosen to be L so that the receiver can remove ISI due to
C(z) and decoding can be performed blockwise. Therefore
the interpolation ratio N is N = M +L. In the case of zero
padding, the transmitter is of the form,

G0 =

�
G

0

�
;

where G is M by M . Using this choice of G0, Fig. 1 can
be redrawn as Fig. 2. The N by M matrix C is a lower
triangular Toeplitz matrix whose first column is given by
[c0 c1 : : : cL 0 : : : 0]T . The N � 1 vector � shown in
Fig. 2 is the blocked version of the scalar noise process
�(n). Using SVD, we decompose the channel matrix C
as

C =
�
U0 U1

�| {z }
U

�
�

0

�
V = U

�
�

0

�
V; (1)

where U and V are orthonormal matrices of dimensions
respectively N �N and M �M , and � is an M �M di-
agonal matrix. The biorthogonal DMT transceivers with ISI



Figure 1: An M -band BDMT transceiver over channel C(z) with noise �(n).

Figure 2: Matrix representation of the zero padded BDMT
transceiver.

free property can be completely parameterized, as described
in the following theorem.

Theorem 1 [3,4] The BDMT system with trailing zeros in
Fig. 1 is ISI free if and only if the zero-padded transceiver
satisfies the followings:

(i) G is an M �M nonsingular matrix;

(ii) S = G�1B, where B = VT��1[I A]UT ; for arbi-
trary M � L matrixA.

3. PROBLEM FORMULATION

In this paper, we assume that the inputs xk are PAM sym-
bols of bk bits. Without much loss of generality, we further
assume that xk have zero mean and they are uncorrelated
with each other. That is, E [xkxm] = �2xkÆ(k�m): This can
always be obtained with proper interleaving. The average
bit rate per symbol in this case becomes b = 1

M

PM�1
k=0 bk:

The transmission power P is the average energy of the

vector y =
�
y0 y1 � � � yN�1

�T
as shown in Fig. 1,

P = 1
N

PM�1
k=0 �2yk : As the inputs xk are uncorrelated and

have zero mean, �2
yk is given by �2

yk =
PM�1

n=0 [G]2kn�
2
xn :

Using this expression, we can write the transmission power

as

P =
1

N

M�1X
k=0

�2xk jjgkjj
2
2: (2)

where jjgkjj22 =
PM�1

`=0 [G]2`k is the energy of the k-th col-
umn ofG.

Under the ISI free condition, for a fixed bit rate and a
fixed probability of error Pe, we will find the transceiver
that minimizes the transmission power. The optimization
process involves 2 steps. We will show in section 4 that the
bits bk can be optimally allocated to minimize the transmis-
sion power for any given transceiver. Under the optimal bit
allocation, the optimal transceiver will then be derived.

4. OPTIMAL BIT ALLOCATION

For a given transceiver, a fixed probability of error P e, and
average bit rate per input symbol b, we present the optimal
bit allocation fbkg

M�1
k=0 with b = 1

M

PM�1
k=0 bk such that the

transmission power in (2) is minimized.
At the receiver end, the output of the k-th band is bxk =

xk + ek, where ek comes entirely from channel noise as the
transceiver achieves zero ISI. Define the M�1 output noise

vector as e =
�
e0 e1 � � � eM�1

�T
, then e = S� =

G�1B�:

Assuming the PAM symbols of the k-th band carry bk
bits, the probability of error for the k-th band is given

by Pe(k) = 2(1 � 2�bk)Q

�r
3�2

x
k

(22bk�1)�2
e
k

�
: For a fixed

probability of error Pe across all bands, we need to have
Pe(0) = Pe(1) = � � � = Pe(M � 1) = Pe. Under the high
bit rate assumption 2bk � 1 � 2bk , we can see that �2

xk
and

�2ek satisfy

�2xk = c22bk�2ek ; where c =
1

3

�
Q�1 fPe=2g

�2
: (3)

Using this relation and applying the AM-GM inequality, the



transmission power in (2) satisfies

P �
cM

N
22b

M�1Y
k=0

�
�2ek jjgkjj

2
2

�1=M 4
= Popt;bit: (4)

The equality holds if and only if 22bk�2ek jjgkjj
2
2 are the

same for all k. Notice that Popt;bit depends only on b
and �2

ek
jjgkjj

2
2, where �2

ek
is determined once the receiver

is known and jjgkjj
2
2 is determined once the transmitter is

given. Therefore when the transceiver is given and average
bit rate per symbol b is fixed, Popt;bit is the lower bound
of the transmission power independent of the bit allocation
fbkg

M�1
k=0 . Solving for the optimal bk, we have

bk = b� log2(�ek jjgkjj2) +
1

M
log2

�
�M�1
`=0 �e` jjg`jj2

�
:

(5)
The optimal bit allocation equalizes the terms
22bk�2ek jjgkjj

2
2. When the transmitting vectors gk

have equal energy, we can see that more bits are assigned
to bands where �2

ek
is small. This is similar to the bit

allocation in water filling scheme. More bits are transmitted
in less noisy bands.

5. OPTIMAL TRANSCEIVERS

Optimal G: We first express the quantity Popt;bit in (4)
in terms of G. The energy of the k-th column of G is
jjgkjj

2
2 =

�
GTG

�
kk

. Let q = B�, then e = G�1q. The
M �M autocorrelation matrix Re of the noise vector e is
given by Re = SR�S

T = G�1RqG
�T ; where Rq is the

autocorrelation matrix of the vector q. The output noise � 2
ek

of the k-th band is equal to [Re]kk or
�
G�1RqG

�T
�
kk

. So
(4) can be rewritten as

Popt;bit = c
M

N
22b

 
M�1Y
k=0

�
GTG

�
kk

�
G�1RqG

�T
�
kk

!1=M

:

Apply the Hadamard inequality, we have

Popt;bit � c
M

N
22b
�
det
�
GTG

�
det
�
G�1RqG

�T
��1=M

= c
M

N
22b(detRq)

1=M 4
= Popt;bit;G (6)

The equality holds if and only if (i) GTG is diagonal and
(ii) G�1RqG

�T is diagonal. The lower bound Popt;bit;G

does not depend on the transmitter G and it is achieved if
and only if G satisfies both conditions (i) and (ii). Let the
Schur decomposition ofRq be

Rq = Q�QT :

Then these 2 conditions can be satisfied by choosing G =
Q. The optimal transmitterG is orthogonal. In this case the

receiver that achieves ISI is given by S = QTB; where B
is given in Theorem 1.

OptimalA: From (6), we see that given anyA, the achiev-
able lower bound Popt;bit;G = cMN 22b(detRq)

1=M . The
matrix A should be chosen such that det(Rq) is mini-
mized. Using the facts that Rq = BR�B

T and B =
VT��1[I A]UT ; we get

det(Rq) = det(��2) det
�
[I A]UTR�U

�
I

AT

��
: (7)

Note that �, U and R� are fixed once the channel and
input noise are given. Thus the optimal A is such that

det
�
[I A]UTR�U[I A]T

�
is minimized. The optimal A

has the following closed form expression (Readers are re-
ferred to [6] for detailed derivation).

A = �UT
0R�U1

�
UT

1R�U1

��1
; (8)

where the matricesU0 andU1 are defined in (1). The min-
imum achievable det(Rq) is

det(��2) det(R�)= det(U
T
1R�U1):

Using this expression and (6), the minimum transmission
power for the optimal transceiver is

Pbiortho = c 22b
M

N

�
det(��2) det(R�)

det(UT
1R�U1)

�1=M
: (9)

Summarizing the results, we have

Theorem 2 Consider the zero padded M -band DMT sys-
tem in Fig. 2. Assume that the inputs are PAM symbols
of bk bits. For any fixed probability of error Pe and any
fixed transmission bit rate per symbol b, the biorthogonal
transceiver is ISI free and minimizes the transmission power
P in (2) if and only if the following are true:

(i) The matrix A is given by A =

�UT
0R�U1

�
UT

1R�U1

��1
, where R� is the au-

tocorrelation matrix of the noise vector � and,U0 and
U1 are as defined in (1).

(ii) The transmitter G = Q, where Q is the orthonor-
mal matrix such that QTRqQ is diagonal. The ma-
trix Rq is given by Rq = BR�B

T ; where B =
VT��1[I A]UT . The receiver is given by S = QTB.

(iii) The bits bk are allocated as bk = b�log2(�ek jjgkjj2)+
1
M log2

�
�M�1
`=0 �e` jjg`jj2

�
.

The minimum transmission power is Pbiortho given in (9)



Example. In this example we compare the transmission
power of the derived optimal transceiver Pbiortho, that of
the orthogonal transceiver derived in [5] Portho;[5], and that
of the vector coding transceiver derived in [2] P vc;[2]. The
closed form expressions of Portho;[5] and Pvc;[2] are de-
rived in [6]. The channel C(z) and power spectrum for
the colored noise �(n) used in this example are showed in
Fig. 3(a) and (b). These parameters are obtained from a typ-
ical ADSL environment. The channel C(z) in this case has
order L = 4. The bit error rate Pe = 10�6 and average
bit rate per sample is Rb = M

N b = 2. The results are plot-
ted for M = 10 to 50 and they are showed in Fig. 4. One
can see that the improvement of Pbiortho over Portho;[5] is
more significant when M is small. When M is large, the
two curves converge. Also Pbiortho is approximately 5 dB
smaller than Pvc;[2]. In the plot we see that Pbiortho and
Portho;[5] appear to be monotone decreasing. It is the au-
thors’ conjecture that Pbiortho and Portho;[5] are monotone
decreasing functions of M .
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Figure 3: (a) The frequency response of the channel
jC(ej!)j. (b) The power spectrum of the channel noise
�(n).

6. CONCLUDING REMARKS

In this paper we show that, for the design of BDMT sys-
tems, there is no loss of generality in using orthogonal
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Figure 4: Performance comparison of Pbiortho, Portho;[5]
and Pvc;[2].

transceivers. The M -band DMT system is often considered
as the dual of an M -band subband coder. The BDMT sys-
tem can be considered as the dual of the transform coder.
The result shown in this paper is similar to the result in sub-
band coding theory that optimal orthogonal transform coder
is as good as any biorthogonal transform coder [7].
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