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ABSTRACT

There has been great interest in the design of DMT (discrete
multitone) transceivers. An M -band DMT transceiver is
called block based if the transmitter and the receiver consist
of constant matrices. The commonly used DMT systems
are mostly block based, e.g., the DFT based system used in
transmission over digital subscriber lines. For an FIR chan-
nel of order L, it is known that redundancy of length L en-
ables the receiver to cancel ISI completely. Such a scheme
allow us to trade bandwidth for ISI cancellation. In block
based DMT (BDMT) systems, the redundancy K is typi-
cally chosen to be the same as the order of the channelL. In
this paper we will consider BDMT transceiver with redun-
dancy K � L. With the reduced redundancy better band-
width efficiency can be obtained as will be demonstrated by
examples. Furthermore minimum redundancy for BDMT
systems will be derived and the transceivers will be param-
eterized whenever ISI solutions exist.

1. INTRODUCTION

The DMT (discrete-multitone) systems have been shown to
be a very useful technique for transmission over frequency
selective channels [1]-[4]. Fig. 1 shows an example of an
M -band DMT transceiver over channel P (z) with addi-
tive noise �(n). The example is the so-called block based
DMT (BDMT), where the transmitter and the receiver con-
sist of constant matrices. The encoding at the transmitter
side and the decoding at the receiver end can be performed
blockwise. Usually with proper time domain equalization
the channel is modeled as an FIR filter of order L. It is
known that for FIR channels, the introduction of certain re-
dundancy allows the receiver to cancel ISI completely. In
fact, channel equalization can be performed implicitly us-
ing FIR transceivers [1]-[4]. Typically in BDMT systems,
the redundancy K is chosen to be the same as the order of
the channel L for ISI cancellation. In this paper we will
consider BDMT transceiver with redundancyK � L. With
the reduced redundancy, we can obtain better bandwidth ef-
ficiency. An example will be given to demonstrate that the
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BDMT with reduced redundancy requires less transmission
power than the traditional BDMT. The advantage is particu-
larly significant for a moderate number of bands. Moreover
we will show that the minimum redundancy for BDMT sys-
tems is dL=2e, where dxe denotes the smallest integer larger
than x. When ISI free solutions of BDMT system with min-
imum redundancy exist, complete parameterization of the
transmitter and receiver will be given.

2. MATRIX REPRESENTATION OF BDMT
SYSTEMS

In this section, we will give the ISI free conditions for BDMT
systems in matrix form. Consider Fig. 1, where an M -
band block based DMT system is shown. Usually the chan-
nel is modeled as an LTI filter P (z) with additive noise
�(n). Assume that P (z) is an FIR filter of order L (a rea-
sonable assumption after time domain equalization). Let
P (z) = p0 + p1z

�1 + � � � pLz
�L with p0 6= 0 and pL 6= 0.

With interpolation ratio N and number of bands M as in
Fig. 1, there are K = N �M redundant samples for every
input block of length M . The N � N system from y(n)
to r(n) is an LTI system with transfer matrix C(z), where
C(z) is a so-called pseudo-circulant matrix [5]. Assuming
N > L, the channel matrixC(z) is causal, and of order one
and we can write it as,

C(z) = C0 + z�1C1; (1)

whereC0 is anN�N lower triangular Toeplitz matrix with

the first column given by
�
p0 p1 � � � pL 0 � � � 0

�T
:

The matrixC1 is N by N and it is of the form

C1 =

�
0 C�

0 0

�
; (2)

whereC� is an L�L upper triangular Toeplitz matrix with
the first row given by

�
pL pL�1 � � � p0

�
: The matrix

C� is nonsingular as pL 6= 0.
The overall transfer functionT(z) of the DMT transceiver

is also causal, of first order, T(z) = T0 + z�1T1, where
T0 = SC0G, andT1 = SC1G. The BDMT is ISI free if,

SC0G = I; condition (i)

and SC1G = 0: condition (ii) (3)



Figure 1: An M -band block based DMT transceiver over channel P (z) with noise �(n).

When the second condition holds, the system has zero IBI
(inter-block interference), a condition necessary for block-
wise encoding and decoding.

3. BDMT TRANSCEIVERS WITH REDUCED
REDUNDANCY

The BDMT system can be seen as a special case of FIR
transceivers, where the transmitting filters and receiving fil-
ters have length � the interpolation ratio N . The BDMT
transceivers have been studied by a number of researchers
[2][3][4]. For a given FIR channel P (z) with order L, re-
dundancy of length K = L is sufficient for the existence of
BDMT transceivers.

Two widely used BDMT transceivers. Most of the BDMT
transceivers fall into the categories of trailing-zero transmit-
ters and leading-zero receivers. In the DFT based DMT sys-
tems [1], redundancy is in the form of cyclic prefix of length
L. The prefix is discarded at the receiving end; the receiver
is of the leading-zero form,SLZ =

�
0(M�L) S0LZ

�
;where

S0LZ is of dimensions M �M . Another commonly used
form of redundancy is zero padding. Zero padding of length
L are used in [2][3][4]. In this case, the transmitter G is of

the trailing-zero form,GTZ =

�
G0

TZ

0(L�M)

�
; whereG0

TZ is

of dimensions M �M .
When the BDMT has transmitter in the trailing-zero form

and receiver in the leading-zero form at the same time, we
say the system is in TZ-LZ form. Using TZ-LZ form, ISI
free solutions of BDMT with reduced redundancy can be
conveniently obtained as we see next.

TZ-LZ BDMT with reduced redundancy
Assume the redundancy is L=2 � K � L. The trans-

mitter is in trailing-zero form and the receiver is in the leading-
zeros form given by,

G =

�
G0

0(K�M)

�
; S =

�
0(M�(L�K)) S0

�
; (4)

whereG0 is M �M and S0 is M � (M +2K�L). Unlike
conventional leading-zero receiver, it has only the first L�

K columns equal to zeros. In this case, condition (ii) in (3)
is satisfies and the ISI free condition reduces to

SC(z)G = S0BG0 = I; (5)

whereB is the bottom left (M + 2K �L)�M submatrix
ofC(z). The matrixB is Toeplitz; it is given by,

B =

0
BBBBBBBBBBBBBBB@

pL�K � � � p0 0 � � � 0
...

. . .
pK

...
. . .

. . . p0

pL
...

0
. . . pL�K

...
...

0 0 pL � � � pK

1
CCCCCCCCCCCCCCCA

(6)

The necessary and sufficient condition for the existence
of ISI free transceiver is that the matrixB has a left inverse.
When K = L=2 (L even case), B is M by M and the
inverse is unique whenever it exists. If K > L=2, the left
inverse of B, when it exists, is not unique. For a given G 0,
we can choose S0 as

S0 = G0�1Q; (7)

where Q is any left inverse of B. In most of our experi-
ments, the matrixB has a left inverse; left inverses ofB do
not exist only in some pathological cases.

Example1. Comparison of ISI free DCT Transceivers
with different redundancy. Consider the channel P (z) and
power spectrum of the colored noise �(n) shown in Fig. 3(a)
and (b). The order of P (z) in this case is 4. These are ob-
tained from a typical DSL environment. Let us consider
block based DCT transceivers with two different cases of
redundancy, reduced redundancy K = 3 and conventional
length of redundancy K = 4. The transmitter used in this
example is as in (4) and G0 is an M � M DCT matrix.
From (5) we know, for an ISI free solution we can choose



S =
�
0 G0�1Q

�
, where Q = (BTB)�1BT is a left in-

verse of B. The bits are allocated optimally as in [4]. For
a fixed probability of error Pe, and transmission bit rate Rb,
the required transmission power P(M;K) is a function of
the number of bands M and redundancy K. We compare
the DCT transceiver with K = 3 and the DCT transceiver
with K = L = 4. With Rb = 3 bits/sample, Fig. 4 shows
the ratio P(M;K = 3)=P(M;K = 4) for different values
ofM . We can see that the DCT transceiver withK = 3 per-
forms significantly better than that with K = 4, especially
for small M .

Minimum redundancy of BDMT transceivers
In what follows, we will consider more general BDMT

systems, not restricted to the TZ-LZ form in (4). The trans-
mitterG is a general N �M matrix and the receiver S is a
general M � N matrix. For BDMT systems in the TZ-LZ
form, we see that the zero IBI property ( condition (ii) of
(3)) can be achieved when redundancy K � dL=2e. The
following lemma will show that dL=2e is in fact the mini-
mum redundancy for IBI free.

Lemma 1 Consider the DMT transceiver in Fig. 1 with in-
terpolation ratio N and number of bands M . The DMT
system is IBI free, i.e., SC1G = 0 only if redundancy K,
given by K = N �M , satisfies 2K � L.

Proof: The matrixC1 is Toeplitz and it has rankL as pL
is assumed to be non zero. AlsoG is full rank of dimensions
N � (N �L); the nullity or the dimension of the null space
ofGT is K. We have,

rank(C1G) � L�K: (8)

Equality holds if and only if the null space of GT is con-
tained in the row space of C1. Similarly, the nullity of S is
also K; we have

rank(SC1G) � rank(C1G)�K � L� 2K: (9)

The first inequality becomes equality if and only if null
space of S is in the range space of C1G. The second in-
equality is due to (8). When the system is IBI free, we have
rank(SC1G) = 0 and from (9) we can see that this is true
only if K � L=2. ���

Remarks. For a given N , we can compute the mini-
mum redundancy for the existence of FIR transceivers as in
[6]. When the minimum redundancy > L=2, FIR solutions
do not exist, let alone block based solutions. The condi-
tion in Lemma 1 gives only the necessary condition for the
existence of IBI free block based transceivers. It does not
guarantee existence. The problem of finding the minimum
redundancy sufficient for the existence of IBI free BDMT
transceivers is still open.

4. PARAMETERIZATION OF BDMT SYSTEMS
WITH MINIMUM REDUNDANCY

When ISI free BDMT systems with minimum redundancy
exist, we can parameterize the solutions. We will assume
that L is even and K = L=2. The solutions for odd L can
be parameterized in a similar manner. Let

S =
�
S0 S1

�
; G =

�
G0

G1

�
;

where S0 and S1 are of dimensions respectively M � L
and M � (M � L=2), and G0 and G1 are of dimensions
respectively (M � L=2)�M and L�M .

Lemma 2 Consider the BDMT transceiver with redundancy
K = L=2, where L is even. (a) The DMT system is ISI free
only if rank(S0) = rank(G1) = L=2. (b) The transceivers
satisfying these rank conditions in (a) are of the form

S = SM

�
�S

0
IM

��
Ps 0

0 IM�L=2

�
| {z }

AS

;

G =

�
IM�L=2 0

0 PG

��
IM

0 �G

�
| {z }

AG

GM ; (10)

where �S and �G are L=2 by L=2 arbitrary matrices and
PS andPG are L� L permutation matrices.

The proof of Lemma 2 is given in [6]. Note that the
matrices SM andGM areM byM and they are nonsingular
because S and G have full rank. Using (10), condition (ii)
in (3) becomes,

�
�S IL=2

�
PSC�PG

�
IL=2
�G

�
= 0: (11)

Let

PSC�PG =

�
�00 �01

�10 �11

�
;

then (11) can be rewritten as

�S�00 +�S�01�G +�10 +�11�G = 0: (12)

Using G and S in (10), condition (i) in (3) becomes

SM ASC0AG| {z }
CM

GM = I: (13)

Using (10) we have converted the two conditions in (3)
to (12) and (13). From (12) and (13), we can solve for the
receiver when the transmitter is given and similarly we can
solve for the transmitter when the receiver is given. For
example, suppose the transmitter is given, that is, �G and



GM are given. We can solve for �S in (12). In particular,
if�00 +�01�G is nonsingular, we have

�S = � (�10 +�11�G) (�00 +�01�G)
�1

: (14)

Eq. (13) can be satisfied if CM is nonsingular. In this case,
SM =G�1

M C�1
M :

The design procedure can be summarized as follows.
Consider the case when the transmitter is given. Choose
GM ,�G andPG for the transmitter in (10) and also choose
PS for the receiver. The matrixGM is an arbitraryM �M
nonsingular matrix and, PG and PS are arbitrary permuta-
tion matrices. We can solve for�S according to (14). Form
the matrix CM in (13) and compute SM = G�1

M C�1
M . For

the case when the receiver is given, the design procedure is
similar.

In the parameterization, no additional assumption has
been made on the transmitter matrix and the receiver ma-
trix except that they achieve zero ISI. Therefore, whenever
BDMT with redundancy K = L=2 exists, it can be param-
eterized as in this section. The parameterization is useful
in some pathological cases where ISI free BDMT solutions
exist but there are no ISI free TZ-LZ solutions. One such
example is given below.

Example2. Consider the FIR channel P (z) = (1 �
z�2)3 with order L = 6. Let M = 5 and K = 3, then
we have N = M +K = 8. We can verify that in this case
the matrix B given in (6) is singular. There are no ISI free
solutions for BDMT in the TZ-LZ form. On the other hand,
let us choose

�G =

0
@1 0 0
0 0 0
0 0 0

1
A :

We can verify that the matrix �00 +�01�G is nonsingu-
lar and the matrix CM in (13) is also nonsingular. We can
obtain solution of �S from (14) and SM = G�1

M C�1
M for

arbitrarily chosen nonsingularGM .

Figure 2: Matrix representation of the block based DMT
transceiver.
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Figure 3: (a) The magnitude response of the channel P (z);
(b) The power spectrum of the additive noise �(n).
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