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ABSTRACT

In our previously proposed equalization criterion with M -
PSK modulated channel inputs [10], perfect equalization
was guaranteed in principle under constrained optimization.
The agorithm was implemented based on stochastic gradi-
ent method. In this paper, we investigate the convergence
property of that algorithm. By carefully examining all sta-
tionary points of the objective function, we prove that all
other pointsare unstable except the desired solution. Theef-
fects of the ary number M and the background noise on the
performance of the proposed equalizer are studied in detail
in our simulations. Satisfactory bit error rate performance
and output constellation are observed.

1. INTRODUCTION

Inwirelessdigital communications, signalsare usually mod-
ulated before transmission. Due to multipath propagation,
channel equalizationisrequired to suppressinter-symbol in-
terference (1S1). When the modulated signals have constant
modulus property, the constant modulus algorithm (CMA)
is one of those very efficient methods for equalization. It is
known that CMA was proposed by [2], [6] and developed
independently by [8]. New criteria were derived and con-
ditions for blind deconvolutions were generally analyzed in
[7]. A detailed survey of thisagorithmisrecently presented
by [4].

All those contributions employ only the amplitude in-
formation of modulated signals. However, modulated sig-
nal's possess properties not only on their moduli, but also on
their phases. For example, phase shift keying (PSK) mod-
ulated signals uniformly distribute on a circle, pulse ampli-
tude modulation (PAM) signals equally space on the x-axis.
These information is usualy known at the receiver. Their
exploitation helps channel equalization, as has been shown
in constellation matching based approach [5]. Initia efforts
have also been madein [9], [10] where statistical properties
of PAM or M-PSK modulated signals are considered in the
equalization cost/objective function.

In[10], it was found that the k-th order moment of a M/ -
PSK signal is non-zero only when k isamultiple of M. In
such a case the k-th order moment of the equalized signal
becomes a constant in the absence of noise. Such constant

isafunction of composite channel parametersincluding the
effects of both the communication channel and the equal-
izer. Similarly, the equalizer’'s output power is aso param-
eterized by composite channel parameters. Perfect equal-
ization (PE) requiresthat the composite channel have single
impulse response and was achieved in [10] by maximizing
the absolute value of the M -th order moment of the equal-
ized signal under the output power constraint. The equal-
izer was recursively updated by stochastic gradient method.
Simulation results showed that the equalizer had a better
performance than those conventional CMA agorithms. For
such implementation, one may ask if the algorithm can con-
vergeto its globally optimal point.

In this paper, convergence property of that algorithmis
analyzed. We first express the objective function used in
[10] as afunction of composite channel parameters, and ob-
tain a set of stationary points. Among those, we further
prove that the optimal point is neither local maximum nor
local minimum. Therefore it is concluded that all are un-
stable points except the desired one. Comparisons with [2],
[7] weremadein [10], and thus omitted in the current paper.
However, simulations are conducted to show the applicabil-
ity once more. Moreover, more new results are provided to
show the effects of the ary number M and the background
noise on the equalizer’s performance in terms of the output
constellation and bit error rate (BER).

2. PROBLEM STATEMENT

Consider blind equalization problem with A-PSK inputs
s(n) and channel output x(n) [3]

2(n) = Hs(n), yo = f"2(n) =a"s(n) (1)

where H isthechannel matrix, y,, isthe output of the equal-
izer f,a™ = £ H isthe combined response of the channel
and the equalizer. Perfect equalization can be achieved if a
has only one non-zero element [7]
a:eje[O,---,O,l,O,---,O]T (2)
Different criteria can be used to obtain the equalizer. In
[10], we proposed a new criterion to obtain the equalizer



with M-ary PSK inputs
max |E{yM}|?>, subjectto E{|y.]*’} =1 (3

Lagrange cost function was constructed to solve this con-
strained maximization problem

J1(f) = E{(fH

where R = E{xzx!}, unknown multiplier A\ was obtained
from power constraint. Finally, the algorithm was imple-
mented by gradient ascent method

o) MIE{(x" )M+ AT Rf-1) (4)

f=F+uMyE{(f )" 2} —bRFf] (5
with step size . and defined constant b = E{(f"z)M}.
Since the new criterion considers the phase characteristics
of the M -PSK signals, which are not consideredin CMA al-
gorithm, a significant performance gain was achieved [10]
in terms of 1Sl and decoding error. However, the conver-
gence property of the new algorithm has not been investi-
gated. In this paper, we will prove that the equalizer con-
verges to the only global maximum that is the desirable re-
sponse.

3. CONVERGENCE ANALYSIS

Our agorithm is similar to [7] in the sense that both are
based on constrained maximization. Someideasthereinwill
beborrowedintheanalysis. Perfect equalization should sat-
isfy the condition (2). It requires combined channel param-
eters a; have only one non-zero element. The analysis will
proceed by examining all stationary points, and showing no
possible local maximum and local minimum in the solution
set for the combined channel parameters.

According to the criterion, equalizer f is obtained from
optimization statement in (3). By using the result of [10]
E{yM} =¥, 0} and E{jy,*} = 3 |, the equaliza-
tion criterion is thus equivalent to the following constrained
maximization with respect to combined channel parameters
ap.

max J(a

—|ZaM2, subjectto Y |al* =1 (6)
l

Solutionsto (6) form a set of stationary points, to which the
equalizer may converge. To obtain the solution, we con-
struct the following Lagrange function:

0,)\1 |Za

where \; is a Lagrange multiplier. At stationary points, a
should satisfy the following partial derivative equations:

P - @
l

8‘]((1' )\1 M 1 *
T = Ma Z M4 \af =0 (8)

A1 is obtained by multiplying both sides of (8) by a; and
summing results for all I under constraint ), |a;|? = 1

-M Z(a;‘)M Za,ﬂvj =\ Z > =\ ©)
1 J 1

Since \; # 0, Y, (ap)™
into (8), we obtain

a’ ! —a;‘ZakM =0 (10)
k

# 0. Thus after substituting A,

If we define q; = rel%, we get a set of stationary points
with zeros and non-zero terms; 7, = 0 <= a; = 0 and
rM2eiM0 = S~ oM = constant, VI. Therefore the
nonzero termsin asingle stationary point satisfy
r; = rm Wherel Zm 11
M6, = M@, + 2kr kisany integer (11)

If there are totally N nonzero componentsin a, then com-
bining (11) and the constraint 3, |a;|* = 1, we further get
r} = + for non-zero elements. For convenience and from
now on, we denote the solutions to (8) under the constraint

for a specified N as vectors a”™ = [al¥ alY...]T such that
each element a}¥ satisfies
. L it
a & rNeit' = { e Lely (12)
0 otherwise

where I'y isany N-element subset of integers. The phase of
the nonzero terms should satisfy (11). Therefore, the set of
stationary pointsfor (7) has elementsa™, N = 1,2,3,---.
By Theorem 1 in [10], a' is the set of globa maximum.
Next we will show that all other stationary pointsa®™, N =
2,3,--- areunstable.

3.1. Local maximum?

For any prespecified N, N > 2, wedefineaset B(a) whose
elements satisfy the constraint with certain phase relations

Bla)={ Y,r} =1,M6, = M6, + 2kr
forl,m € Iy, kisany integer
rp =0 otherwise} (13)

Clearly, a¥ € B(a") C B(a). To show that a™¥, N =
2,3, ... arenot local maximum, wewill prove J(a) > J(a®),
wherea € B(a). First we definea asa = [a1 as -7
whose dementisa; = |a;|> — |a}¥ |> = r? — +. Under this
definition, a; satisfies

_1 <« ,S(l
;woa{ R

Iwithout confusing from the context, notation with superscript NV is
used to represent such set instead of the power of the argument.

%) forlely

otherwise (14)




Then, we can eval uate the values of objectivefunction J(a)
at ¥ and a respectively, and find their relative relation.
First from (13), we have e/ Mé" = ¢iM05 Then

VI@™) =1 2@ = 126 = e (19
l l

where L = M4

_ 5 Since a is € B(a) in (13), we similarly
obtain

_|Zr 67M0’|—Z( +a)"  (16)

leln

Next, we compare (16) with (15) under constraints (14).
Construct anew constrained function

1 1
Ela)=) (¥ + a)t — NI XD ) (17)
then o (a) .
o) 1 L1 _ . _
Sl =L +a)tT =0 (@

From (18) and the constraint (14), we can conclude that at
stationary points of E(c), al non-zero «; should be equal.
Thus the only stationary point of E(«) is a zero vector
opt = [0,+-+,0]T.

To see if this point is the only minimum point, we con-
tinue to evaluate the Hessian of E(«). According to (18),
the Hessian matrix is seen to be diagonal. Its determinant
can be computed

|IDy| = HL +a,) =2 (19)

Clearly |[Dn|a,,, > 0. Thereforeoy,, = [0,---,0]” isthe
onlymmlmumpomtofE( ) [1] WhlchmeansthatE( ) >
E(aopt) = 0. Under the constraint (14), it is equivalent to

1 1
Z (N +a)t > NI 1
leln
Therefore
J(a) > J(a")
Theinequality is strict when «; # 0 for somel € Iy.
Up to now, we have proved a™, N = 2,3, ... can not be
alocal maximum of .J(a) over B(a). Next, we will further
investigate if a™¥, N = 2, 3, ... can be alocal minimum.

3.2. Local minimum?

Similar to Shalvi’s approach, we construct another set a =
[a1 @2 -+ +]T = [rie?? ryed? .. .]T with its amplitude and
phase satisfying

—erlN lely

1
7“12{ Ve I=p (20)
0

otherwise

M6, = M6, + 2kw wherek isany integer (21)

where 0 < e < w7 and p is any integer such that p does
not belong to Iy. Obviously @ € B(a) and ), |@|* = 1.
Now, we will prove J(a) < J(a™) by first showing that
| > aM| < | Y, (aN)M]. By direct calculation, we get

~ j M O~
IS"aM = Y (VIT=esM)M ke’

l leln

. iMfO~

= [ Y=t )M e
leln

1
= (1 —-E)Ljvj;:T +’6L (22)

Then we can construct function G(e)

@ =1 (@)Y

l l

1 I 1
NL-1 o

Gle) =

= (1-¢F (23)

The stationary point of G (e) satisfies

2G(e) _
de

—L(1—¢)t! + Lt =0 (29)

1
NL—1
which gives L — 1 repetitiverootse = 2. Thereareno

other stationary points since G(¢) is a polynomial of order
L. The second derivative of G(e) hasthe form

G

) L(L-1)(1—e)t2

—NLl—l + L(L—1)el=2 (25)

Clearly, 57 le=xts > 0. Therefore, € = N—+1

minimum of G( ). Observing G(e = 0) = 0 and

is the only

1 1 1

Gle=§37) = wrpi= ~ N

<0

we conclude that, when 0 < ¢ < A=, G(e) < 0 which

means | Y, aM| < | Y, (a])M]. Hence J(a) < J(a™).
This shows that a’¥, N = 2, 3..., can not be alocal mini-
mum.

Combining the previoustwo results, it is established that
a™, N = 2,3,... must be a saddle point. Therefore, a' is
the unique globally optimal solution. Perfect equalization
is then achieved in the absence of noise, as aso verified by
our simulation results.

4. NUMERICAL RESULTS

Since performance comparison between the proposed algo-
rithm and conventional CMA was shown in [10], we only
present results for our method with A/-PSK inputs. We con-
sider a non-minimum phase channel used in [7], and use
12-tap equalizer whichisinitialized as a unitary vector with



“1” inthemiddle. The step sizeisset tobe u = 22, Fig.1
is the output diagram with 8-ary PSK inputs. As expected,
the equalizer’s output convergesto eight desirable constel-
lations accurately, indicating perfect equalization. We aso
test the effect of A/ and background noise on the BER. For
different M, no detection errors are observed after the algo-
rithm converges. Thus the average BERs from 100 realiza-
tionsare compared in Fig. 2 from the beginning of iteration.
It is seen that the BER decreases with M. Fig. 3 showsthe
average BERs from 1000 realizationsfor M = 4,8, 16, 32
in the presence of different additive white Gaussian noise
(AWGN). SN R variesfrom 0dB to 32dB with 2dB incre-
ment. This result further confirms the convergence of our
new algorithm in anoisy environment.
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Fig. 1. Output constellation of the proposed algorithm for
8-PSK modulation.
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Fig. 2. Effect of the ary number M on the equalization per-
formance.
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Fig. 3. Performance of the equalizer with different AWGN
and different M.




