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ABSTRACT

In our previously proposed equalization criterion with M -
PSK modulated channel inputs [10], perfect equalization
was guaranteed in principle under constrained optimization.
The algorithm was implemented based on stochastic gradi-
ent method. In this paper, we investigate the convergence
property of that algorithm. By carefully examining all sta-
tionary points of the objective function, we prove that all
other points are unstable except the desired solution. The ef-
fects of the ary number M and the background noise on the
performance of the proposed equalizer are studied in detail
in our simulations. Satisfactory bit error rate performance
and output constellation are observed.

1. INTRODUCTION

In wireless digital communications, signals are usually mod-
ulated before transmission. Due to multipath propagation,
channel equalization is required to suppress inter-symbol in-
terference (ISI). When the modulated signals have constant
modulus property, the constant modulus algorithm (CMA)
is one of those very efficient methods for equalization. It is
known that CMA was proposed by [2], [6] and developed
independently by [8]. New criteria were derived and con-
ditions for blind deconvolutions were generally analyzed in
[7]. A detailed survey of this algorithm is recently presented
by [4].

All those contributions employ only the amplitude in-
formation of modulated signals. However, modulated sig-
nals possess properties not only on their moduli, but also on
their phases. For example, phase shift keying (PSK) mod-
ulated signals uniformly distribute on a circle, pulse ampli-
tude modulation (PAM) signals equally space on the x-axis.
These information is usually known at the receiver. Their
exploitation helps channel equalization, as has been shown
in constellation matching based approach [5]. Initial efforts
have also been made in [9], [10] where statistical properties
of PAM or M -PSK modulated signals are considered in the
equalization cost/objective function.

In [10], it was found that the k-th order moment of a M -
PSK signal is non-zero only when k is a multiple of M . In
such a case the k-th order moment of the equalized signal
becomes a constant in the absence of noise. Such constant

is a function of composite channel parameters including the
effects of both the communication channel and the equal-
izer. Similarly, the equalizer’s output power is also param-
eterized by composite channel parameters. Perfect equal-
ization (PE) requires that the composite channel have single
impulse response and was achieved in [10] by maximizing
the absolute value of the M -th order moment of the equal-
ized signal under the output power constraint. The equal-
izer was recursively updated by stochastic gradient method.
Simulation results showed that the equalizer had a better
performance than those conventional CMA algorithms. For
such implementation, one may ask if the algorithm can con-
verge to its globally optimal point.

In this paper, convergence property of that algorithm is
analyzed. We first express the objective function used in
[10] as a function of composite channel parameters, and ob-
tain a set of stationary points. Among those, we further
prove that the optimal point is neither local maximum nor
local minimum. Therefore it is concluded that all are un-
stable points except the desired one. Comparisons with [2],
[7] were made in [10], and thus omitted in the current paper.
However, simulations are conducted to show the applicabil-
ity once more. Moreover, more new results are provided to
show the effects of the ary number M and the background
noise on the equalizer’s performance in terms of the output
constellation and bit error rate (BER).

2. PROBLEM STATEMENT

Consider blind equalization problem with M -PSK inputs
s(n) and channel output x(n) [3]

x(n) =Hs(n); yn = fHx(n) = aTs(n) (1)

whereH is the channel matrix, yn is the output of the equal-
izer f , aT = fHH is the combined response of the channel
and the equalizer. Perfect equalization can be achieved if a
has only one non-zero element [7]

a = ej�[0; � � � ; 0; 1; 0; � � � ; 0]T (2)

Different criteria can be used to obtain the equalizer. In
[10], we proposed a new criterion to obtain the equalizer



with M -ary PSK inputs

max jEfyMn gj2; subject to Efjynj2g = 1 (3)

Lagrange cost function was constructed to solve this con-
strained maximization problem

J1(f) = Ef(fHx)MgEf(xHf )Mg+�(fHRf�1) (4)

where R = EfxxHg, unknown multiplier � was obtained
from power constraint. Finally, the algorithm was imple-
mented by gradient ascent method

f = f + �Mb�[Ef(fHx)M�1xg � bRf ] (5)

with step size � and defined constant b = Ef(fHx)Mg.
Since the new criterion considers the phase characteristics
of theM -PSK signals, which are not considered in CMA al-
gorithm, a significant performance gain was achieved [10]
in terms of ISI and decoding error. However, the conver-
gence property of the new algorithm has not been investi-
gated. In this paper, we will prove that the equalizer con-
verges to the only global maximum that is the desirable re-
sponse.

3. CONVERGENCE ANALYSIS

Our algorithm is similar to [7] in the sense that both are
based on constrained maximization. Some ideas therein will
be borrowed in the analysis. Perfect equalization should sat-
isfy the condition (2). It requires combined channel param-
eters al have only one non-zero element. The analysis will
proceed by examining all stationary points, and showing no
possible local maximum and local minimum in the solution
set for the combined channel parameters.

According to the criterion, equalizer f is obtained from
optimization statement in (3). By using the result of [10]
EfyMn g =

P
l a

M
l and Efjynj2g =

P jalj2, the equaliza-
tion criterion is thus equivalent to the following constrained
maximization with respect to combined channel parameters
al:

maxJ(a) = j
X
l

aMl j2; subject to
X
l

jalj2 = 1 (6)

Solutions to (6) form a set of stationary points, to which the
equalizer may converge. To obtain the solution, we con-
struct the following Lagrange function:

J(a; �1) = j
X
l

aMl j2 + �1(
X
l

jalj2 � 1) (7)

where �1 is a Lagrange multiplier. At stationary points, a
should satisfy the following partial derivative equations:

@J(a; �1)

@al
= MaM�1

l

X
k

(a�k)
M + �1a

�
l = 0 (8)

�1 is obtained by multiplying both sides of (8) by al and
summing results for all l under constraint

P
l jalj2 = 1

�M
X
l

(a�l )
M
X
k

aMk = �1
X
l

jalj2 = �1 (9)

Since �1 6= 0,
P

k(a
�
k)
M 6= 0. Thus after substituting �1

into (8), we obtain

aM�1
l � a�l

X
k

aMk = 0 (10)

If we define al
�
= rle

j�l , we get a set of stationary points
with zeros and non-zero terms: rl = 0 () al = 0 and
rM�2
l ejM�l =

P
k a

M
k = constant; 8l. Therefore the

nonzero terms in a single stationary point satisfy�
rl = rm where l 6= m
M�l =M�m + 2k� k is any integer (11)

If there are totally N nonzero components in a, then com-
bining (11) and the constraint

P
l jalj2 = 1, we further get

r2l = 1
N

for non-zero elements. For convenience and from
now on, we denote the solutions to (8) under the constraint
for a specified N as vectors aN = [aN1 aN2 :::]

T such that
each element aNl satisfies1

aNl
�
= rNl e

j�Nl =

�
1p
N
ej�

N
l l 2 IN

0 otherwise
(12)

where IN is anyN -element subset of integers. The phase of
the nonzero terms should satisfy (11). Therefore, the set of
stationary points for (7) has elements aN , N = 1; 2; 3; � � �.
By Theorem 1 in [10], a1 is the set of global maximum.
Next we will show that all other stationary points aN , N =
2; 3; � � � are unstable.

3.1. Local maximum?

For any prespecifiedN ,N � 2, we define a setB(a) whose
elements satisfy the constraint with certain phase relations

B(a) = f P
l r
2
l = 1;M�l = M�m + 2k�

for l;m 2 IN ; k is any integer
rl = 0 otherwise g (13)

Clearly, aN 2 B(aN ) � B(a). To show that aN , N =
2; 3; ::: are not local maximum, we will proveJ(a) � J(aN ),
where a 2 B(a). First we define � as � = [�1 �2 � � �]T
whose element is �l = jalj2 � jaNl j2 = r2l � 1

N
. Under this

definition, �l satisfies

X
l

�l = 0;

�
� 1

N
� �l � (1� 1

N
) for l 2 IN

�l = 0 otherwise (14)

1Without confusing from the context, notation with superscript N is
used to represent such set instead of the power of the argument.



Then, we can evaluate the values of objective function J(a)
at aN and a respectively, and find their relative relation.

First from (13), we have ejM�Nl = ejM�Nm . Thenq
J(aN ) = j

X
l

(aNl )
M j = j

X
l

(rNl )M j = 1

NL�1 (15)

where L = M
2

. Since a is 2 B(a) in (13), we similarly
obtainp

J(a) = j
X
l

rMl ejM�l j =
X
l2IN

(
1

N
+ �l)

L (16)

Next, we compare (16) with (15) under constraints (14).
Construct a new constrained function

E(�) =
X
l2IN

(
1

N
+ �l)

L � 1

NL�1 � �2(
X
l2IN

�l) (17)

then
@E(�)

@�l
= L(

1

N
+ �l)

L�1 � �2 = 0 (18)

From (18) and the constraint (14), we can conclude that at
stationary points of E(�), all non-zero �l should be equal.
Thus the only stationary point of E(�) is a zero vector
�opt = [0; � � � ; 0]T .

To see if this point is the only minimum point, we con-
tinue to evaluate the Hessian of E(�). According to (18),
the Hessian matrix is seen to be diagonal. Its determinant
can be computed

jDN j =
Y
l

@2E

@�2l
=
Y
l

L(L� 1)(
1

N
+ �l)

L�2 (19)

Clearly jDN j�opt
> 0. Therefore�opt = [0; � � � ; 0]T is the

only minimum point ofE(�) [1] which means thatE(�) �
E(�opt) = 0. Under the constraint (14), it is equivalent to

X
l2IN

(
1

N
+ �l)

L � 1

NL�1

Therefore
J(a) � J(aN )

The inequality is strict when �l 6= 0 for some l 2 IN .
Up to now, we have proved aN , N = 2; 3; ::: can not be

a local maximum of J(a) over B(a). Next, we will further
investigate if aN , N = 2; 3; ::: can be a local minimum.

3.2. Local minimum?

Similar to Shalvi’s approach, we construct another set ea =
[ea1 ea2 � � �]T = [r1e

j�1 r2e
j�2 � � �]T with its amplitude and

phase satisfying

rl =

8<
:

p
1� � rNl l 2 INp
� l = ep

0 otherwise
(20)

M�l = M�m + 2k� where k is any integer (21)

where 0 < � < 1
N+1

and ep is any integer such that ep does
not belong to IN . Obviously ea 2 B(a) and

P
l jealj2 = 1.

Now, we will prove J(ea) < J(aN ) by first showing that
jPl eaMl j < jPl(a

N
l )

M j. By direct calculation, we get

j
X
l

eaMl j = j
X
l2IN

(
p
1� �sNl )

M + �Le
jM�ep j

= j
X
l2IN

(1� �)L(rNl )MejM�l + �Le
jM�ep j

= (1� �)L
1

NL�1 + �L (22)

Then we can construct function G(�)

G(�) = j
X
l

eaMl j � jX
l

(aNl )
M j

= (1� �)L
1

NL�1 + �L � 1

NL�1 (23)

The stationary point of G(�) satisfies

@G(�)

@�
= �L(1� �)L�1

1

NL�1 + L�L�1 = 0 (24)

which gives L � 1 repetitive roots � = 1
N+1

. There are no
other stationary points since G(�) is a polynomial of order
L. The second derivative of G(�) has the form

@2G

@�2
= L(L�1)(1� �)L�2

1

NL�1 +L(L�1)�L�2 (25)

Clearly, @2G
@�2

j�= 1
N+1

> 0. Therefore, � = 1
N+1

is the only

minimum of G(�). Observing G(� = 0) = 0 and

G(� =
1

N + 1
) =

1

(N + 1)L�1
� 1

NL�1 < 0

we conclude that, when 0 < � < 1
N+1

, G(�) < 0 which
means jPl eaMl j < jPl(a

N
l )

M j. Hence J(ea) < J(aN ).
This shows that aN , N = 2; 3:::, can not be a local mini-
mum.

Combining the previous two results, it is established that
aN , N = 2; 3; ::: must be a saddle point. Therefore, a1 is
the unique globally optimal solution. Perfect equalization
is then achieved in the absence of noise, as also verified by
our simulation results.

4. NUMERICAL RESULTS

Since performance comparison between the proposed algo-
rithm and conventional CMA was shown in [10], we only
present results for our method withM -PSK inputs. We con-
sider a non-minimum phase channel used in [7], and use
12-tap equalizer which is initialized as a unitary vector with



“1” in the middle. The step size is set to be � = 0:02
M

. Fig.1
is the output diagram with 8-ary PSK inputs. As expected,
the equalizer’s output converges to eight desirable constel-
lations accurately, indicating perfect equalization. We also
test the effect of M and background noise on the BER. For
differentM , no detection errors are observed after the algo-
rithm converges. Thus the average BERs from 100 realiza-
tions are compared in Fig. 2 from the beginning of iteration.
It is seen that the BER decreases with M . Fig. 3 shows the
average BERs from 1000 realizations for M = 4; 8; 16; 32
in the presence of different additive white Gaussian noise
(AWGN). SNR varies from 0dB to 32dB with 2dB incre-
ment. This result further confirms the convergence of our
new algorithm in a noisy environment.
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Fig. 1. Output constellation of the proposed algorithm for
8-PSK modulation.
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Fig. 2. Effect of the ary number M on the equalization per-
formance.
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Fig. 3. Performance of the equalizer with different AWGN
and different M .


