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ABSTRACT

An Optimal filter for extracting quasi-periodic signals
such as a voiced speech or instrumental sound from
the noise-corrupted obhservation are proposed. They
are derived through the Kalman-Bucy filter analysis
in which the dynamics of amplitude and pitch fluctu-
ations are described through Ito stochastic differential
equations. The Laplace analysis to the filter equation
leads to three types of comb filters, i.e., constant-BW
(-bandwidth) type, constant-Q type and those mixture
type that have robustness to the amplitude fluctua-
tion, pitch fluctuation and both of them, respectively.
All-pole digital filters can be also realized for real-time
processing. Examples of filter design are presented,
and the performance of harmonics extraction is exam-
ined by comparison between the constant-BW type and
constant-Q type.

1. INTRODUCTION

Quasi-periodic signals (or time-varying harmonics) such
as a voiced speech, instrumental sound or mechanical
vibration play an essential role in our daily communi-
cation. It is, therefore, one of the essential topics in the
signal processing field to extract such harmonics from
the noise-corrupted observation. Much effort has been
spent to solve this problem, but the effective method
has not been established yet.

The comb filter is well known as the most typical
method for harmonics extraction. It works so as to en-
hance the periodicity of harmonics by averaging over
every point spacing at a pitch interval[l] and thus em-
phasize a discrete spectral structure in harmonics[2].
The Kalman filtering approach has heen proposed for
estimation of time-varying harmonic components. The
state-space signal model allows the introduction of the
time-varying phenomenal3], especially the effect of har-
monic amplitude fluctuation has been investigated[4].
Even a slight indistinctness of the pitch information,
however, causes a significant distortion to the filter out-
put, because any conventional methods do not take into
account the effect of the inevitable pitch estimation er-
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ror and fluctuation. In our previous work[5], an optimal
comb filter has been obtained by the least mean square
estimation under the strict assumption that the pitch
estimate includes the uniform bias error.

In this paper, we propose the generalized comb fil-
ters which have a robustness to both of amplitude and
pitch fluctuations. They are derived by the Kalman-
Bucy filter analysis in which those fluctuation dynamics
are described through Ito stochastic differential equa-
tions. The Laplace analysis to the filter equation pro-
vides the noteworthy following results: (1)When only
the amplitude fluctuation exists, the constant-BW (-
bandwidth) comb filter of which every passband has a
constant bandwidth on each harmonic frequency is de-
rived. (2)When only the pitch fluctuation exists, the
constant-(Q) comb filter of which each bandwidth is ho-
mogeneously dilated in proportion to the harmonic fre-
quency is obtained. (3)When both amplitude and pitch
fluctuations exist, the filter works as the constant-BW
type in lower frequency, the constant-Q type in higher
frequency, and those mixture appears in the intermedi-
ate frequency. Furthermore, the digital filter formula-
tion can be also derived through the s-z transform and
the discretization of the filter equation.

2. KALMAN-BUCY FILTER EQUATION

The basic behavior of quasi-periodic signals can be de-
scribed by the following Ito stochastic differential equa-
tion:

da(t) = Q(t)a(t)dt + dB(1)a(t), (1)
where
(E(t) = [zl(t)s $2(t)7 R IN(t)]Ta
1) = diag{ = (07 (1) + 02(0) + (1)
B % (ean(t) + N*a (1)) + iNuwo(0)},
dB(t)=diag{o . (t)dBa (t) + jou(t)dB.(t),
oo Tan (D)dBan (t) + I N (H)dB. (1) ).

2, (t) is each harmonic component of the quasi-period-
ic signal and wy(t) denotes a slowly time-varying pitch



frequency estimated in advance. 3,,(t) and B, (t) mean
normal Brownian motion processes to describe random-
ness of amplitude changes and pitch fluctuations with
the variance o2, (t) and o2 (t), respectively.

The actually observed signal is given by summation
of harmonic components and a zero-mean white Gaus-

sian measurement noise v(t) with variance o2(t), i.e.,

y(t) = 17a(1) + o (1), (2)

where 1 = [1---1]7, superscripts T means the matrix
transpose. v(t),Aw(t) and {x1(0),---,2x(0)} are as-
sumed to be independent each other.

Our goal is to compute an optimum estimate @(¢)
to the original signal z(t) from the given observation
sequence {y(7) : 0 < 7 < t}. The solution can be
obtained by a way of the Kalman-Bucy filter in which
the random fluctuation term dB(t)x(t) is treated as a
state-dependent noise[6]. It yields the following differ-
ential equation:

di(t) 1
e Q(t)z(t) + 720

P(1fy(t) - 17&(t).  (3)

P(t) means a covariance error matrix:

P(t) = E[(z(?) - 2(1))(=(t) - 2(1))"] (4)
which satisfies the following Riccati equation:

dP(t)
dt

= Q)P(t) + P()Q(t)

LT 5
a';{(t)P(t)ll P(t)+ X(t), (5)

where

2 (t)=diag{{oz, () +05 (t) 71 (t),
o Aran (N2 ()N ()]

#2(t) = E[|z,.(#)|?] and superscripts * means the com-
plex conjugate transpose.

3. STEADY STATE SOLUTION

If every parameter’s fluctuation is sufficiently small, the
interaction between different harmonic components can
be neglected and then Eq.(3) separates into indepen-
dent scalar equations:

dFn(t)
dt

= [~ 02(0) + e (D)} (1)

+£28 ly(t) = 2.(t)]  (6)
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Figure 1: Pole allocation of the transfer function in the
z-plane. (a)Counstant-BW type. (b)Constant-Q type.
(c)Composite type.

on each harmonic component, where p,(t) satisfies the
scalar Riccati equation:

dpa(t) _ o .. 1.
;t = op ()T (1) = an(t)pa(t) - O_T(t)pfz(t)v (7)

v

where
oh(t) = al,(t) +n*a(t).

When any parameter can be regarded as nearly con-

stant values, i.e., wy(t) —wp, T2(t) = 72, 02(t) —> 02,
o2, (t) — 02,,0%(t) = o2, Eq.(7) asymptotically con-

ar an? w

verges to

1 .
=2 52 22 4 4 2 2
7,0,0, + TO0n0y = 50,0, (8)
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In this steady state condition, Eq.(6) is simplified as

diry (t)
dt
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For %O’fl > %rfi, the transfer function to estimate the
H
harmonic component #,(¢) from the observation y(t)

can be approximately described as

(o) =l o w7 (10)
Y (s) 54+ L0y, — Jnwy

through the Laplace transform to Eq.(9), It is shown
that the transfer function involves a band-pass charac-
teristic of which center frequency is just located at each
harmonic frequency jnwg, i.e., a comb-like structure.



(a) For only amplitude fluctuation

When only the amplitude fluctuation exists uni-
formly in all harmonic components (62, = -+ = 02, =
o2) but the pitch fluctuation is omitted (¢ = 0), ev-
ery pole is allocated at equal spaces along the straight
line parallel to the imaginary axis on the left side of s-
plane (see Figure 1(a)). It means the transfer function
consists of pass-bands with a constant bandwidth just
located at each harmonic frequency. It is, therefore,
called “constant-BW comb filter.” The bandwidth is
dilated in proportion to the spacing between each pole
and imaginary axis, i.e., K.
(b) For only pitch fluctuation

When only the pitch fluctuation exists but the am-
plitude fluctuation is omitted (¢2, = -+ = o2, = 0),
every pole is allocated at equal spaces along the skew
line across the origin (see Figure 1(b)). It means the
bandwidth of pass-band just located at each harmonic
frequency is homogeneously dilated in proportion to
the harmonic frequency. It is so called “constant-Q
comb filter.” The more the gradient of pole allocation
sharpens, i.e., the smaller ., the more the Q-factor
enlarges.
(c) For both fluctuations

When bhoth amplitude and pitch fluctuations ex-
ist, the transfer function shows the following tendency.
Since the effect of amplitude fluctuation o, becomes
dominant in small order n, the pole allocation is more
close to the constant-BW type in lower frequency. Op-
positely, the effect of pitch fluctuation o, hecomes dom-
inant in large order n and thus the pole allocation
is more close to the constant-Q type in higher fre-
quency (see Figure 1(c)). It means, therefore, the filter
characteristic gradually changes from the constant-BW
type to the constant-Q type as the harmonic frequency
varies from low to high.

In either case, the ideal periodic signal input never
produce any distortion to the filter output because the
filter gain on each harmonic frequency always holds

H,(jnwy) = 1.
4. ALL-POLE DIGITAL COMB FILTERS

From Eq.(10), the digital filter formulation can be di-
rectly derived by the s-z transform using the impulse
invariant method, thus

knTs
T e atinwo) T, 1 (11)

Hy(2)

where T means a sampling interval and &,, = %‘7"'
The overall filter architecture for harmonics extraction
is given by H(z) = Z;Ll H,(z). In the z-plane, each
pole is allocated at equal angles corresponding to the

harmonic frequency and pulled into more inside of the
unit circle in higher harmonic frequency. This structure
is indeed suitable for real-time processing.

Another description of the digital filter can be de-
rived as follows. Using &, (¢t — T5) as the initial value,
the analytical solution of Eq.(6) at the time ¢ can be
represented as

in(t) = C/’(t t— Ts)i'n(t - Ts)

' pn(T)/ ir
+/tTS ¢(t,T)02(T)y( )d s (12)

v

where

o () — Py g
gb(t,T) _ efr(J“'“U(“) i%(sj)(ls. (13)
Since any parameters can be regarded as varying
smoothly for the assumption of quasi-periodicity and
holding constant values for t — T, < 7 < t, Eq.(12) can
be rewritten as

G (t) = elmrn(OFinealO} e (¢ T)
+rn () Tsy(t),  (14)

where £, (t) = p,(t)/o2(t). This representation means
the adaptive filter operation such that pole parameters
can be adjusted to the time-varying phenomena. In the
steady state condition, especially, the above coincides
with Eq.(11).

5. EVALUATIONS

In the following simulations, we assume that the peri-
odic signal is synthesized by cutting out one cycle part
from a waveform of real voiced sound ’a’ and connect-
ing it periodically, and the time-varying harmonics is
made artificially by imposing some amplitude and/or
pitch fluctuations to the periodic signal. Our goal here
is to extract the original time-varying harmonics from
the contaminated version with white Gaussian noise by
using the filters proposed above.

The first trial is performed on the harmonics in-
cluding only the amplitude fluctuation, Kalman gains
are determined as adjusted to the amplitude fluctu-
ation. The extracted waveform seems to be counsid-
erably close to the original signal in the case of the
constant-BW comb filter, but in the constant-Q type
some noise remains in higher frequency. This is be-
cause the constant-Q) type causes the noise component
in higher frequency to be more absorbed for the wide
bandwidth as seen in the spectrum distribution (see
Figure 2). This result maintains an advantage of the
constant-BW comb filter to the amplitude fluctuation.

The next one is performed on the harmonics in-
cluding ouly the pitch fluctuation. Kalman gains are



i I I
270 540 810 1080
(b) 0 T T

AN
S o
1 =1

I I
540 810 1080

Magnitude (dB)
o 9
OO
N
NE
o

1 1 1
0 270 540 810 1080
Frequency [Hz]

Figure 2: Spectral deformation caused by amplitude
fluctuation. (a)Original signal. (b)Noise-corrupted sig-
nal. (c¢)Extracted result by the constant-BW comb fil-
ter. (d)Extracted result by the constant-Q comb filter.

same with the above. The waveform collapse occurs
in the constant-BW type, but in the coustant-Q type
the original signal is restored accurately as compared
with the constant-BW type. Since the pitch fluctua-
tion dilates each bandwidth of harmonic component in
proportion to the harmonic frequency, the constant-Q
structure is suitable for holding the spectral shape of
the time-varying harmonics without any deformation
(see Figure 3). The constant-BW structure, however,
forces the spectral deformation significantly in higher
frequency. It means the constant-Q comb filter has a
robustness to the pitch fluctuation.

6. CONCLUSION

We have presented optimal filters for quasi-periodic sig-
nal extraction with a robustness to the amplitude and
pitch fluctuations. To consider the time-varying phe-
nomena, the It6 stochastic differential equation is em-
ployed as the signal model. The filter equation giving
the optimum estimate is derived by the Kalman-Bucy
filter method. It has been shown that the transfer
function leads to the constant-BW comb structure, the
constant-Q comb structure and these mixture, corre-
sponding to the amplitude fluctuation, the pitch fluc-
tuation and both of them, respectively. Finally, useful-
ness of the constant-BW and constant-Q comb filters
are verified through some simulations.
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Figure 3: Spectral deformation caused by pitch fluc-
tuation. (a)Original signal. (b)Noise-corrupted signal.
(c)Extracted result by the constant-BW comb filter.
(d)Extracted result by the constant-Q comb filter.
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