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ABSTRACT

An Optimal �lter for extracting quasi-periodic signals
such as a voiced speech or instrumental sound from
the noise-corrupted observation are proposed. They
are derived through the Kalman-Bucy �lter analysis
in which the dynamics of amplitude and pitch 
uctu-
ations are described through Itô stochastic di�erential
equations. The Laplace analysis to the �lter equation
leads to three types of comb �lters, i.e., constant-BW
(-bandwidth) type, constant-Q type and those mixture
type that have robustness to the amplitude 
uctua-
tion, pitch 
uctuation and both of them, respectively.
All-pole digital �lters can be also realized for real-time
processing. Examples of �lter design are presented,
and the performance of harmonics extraction is exam-
ined by comparison between the constant-BW type and
constant-Q type.

1. INTRODUCTION

Quasi-periodic signals (or time-varying harmonics) such
as a voiced speech, instrumental sound or mechanical
vibration play an essential role in our daily communi-
cation. It is, therefore, one of the essential topics in the
signal processing �eld to extract such harmonics from
the noise-corrupted observation. Much e�ort has been
spent to solve this problem, but the e�ective method
has not been established yet.

The comb �lter is well known as the most typical
method for harmonics extraction. It works so as to en-
hance the periodicity of harmonics by averaging over
every point spacing at a pitch interval[1] and thus em-
phasize a discrete spectral structure in harmonics[2].
The Kalman �ltering approach has been proposed for
estimation of time-varying harmonic components. The
state-space signal model allows the introduction of the
time-varying phenomena[3], especially the e�ect of har-
monic amplitude 
uctuation has been investigated[4].
Even a slight indistinctness of the pitch information,
however, causes a signi�cant distortion to the �lter out-
put, because any conventional methods do not take into
account the e�ect of the inevitable pitch estimation er-

ror and 
uctuation. In our previous work[5], an optimal
comb �lter has been obtained by the least mean square
estimation under the strict assumption that the pitch
estimate includes the uniform bias error.

In this paper, we propose the generalized comb �l-
ters which have a robustness to both of amplitude and
pitch 
uctuations. They are derived by the Kalman-
Bucy �lter analysis in which those 
uctuation dynamics
are described through Itô stochastic di�erential equa-
tions. The Laplace analysis to the �lter equation pro-
vides the noteworthy following results: (1)When only
the amplitude 
uctuation exists, the constant-BW (-
bandwidth) comb �lter of which every passband has a
constant bandwidth on each harmonic frequency is de-
rived. (2)When only the pitch 
uctuation exists, the
constant-Q comb �lter of which each bandwidth is ho-
mogeneously dilated in proportion to the harmonic fre-
quency is obtained. (3)When both amplitude and pitch

uctuations exist, the �lter works as the constant-BW
type in lower frequency, the constant-Q type in higher
frequency, and those mixture appears in the intermedi-
ate frequency. Furthermore, the digital �lter formula-
tion can be also derived through the s-z transform and
the discretization of the �lter equation.

2. KALMAN-BUCY FILTER EQUATION

The basic behavior of quasi-periodic signals can be de-
scribed by the following Itô stochastic di�erential equa-
tion:

dx(t) = 
(t)x(t)dt + dB(t)x(t); (1)

where

x(t) = [x1(t); x2(t); � � � ; xN (t)]
T ;


(t) = diagf�
1

2
(�2a1(t) + �2!(t)) + j!0(t);

� � � ;�
1

2
(�2aN (t) +N2�2!(t)) + jN!0(t)g;

dB(t)=diagf�a1(t)d�a1(t) + j�!(t)d�!(t);

� � � ; �aN (t)d�aN (t) + jN�!(t)d�!(t)g:

xn(t) is each harmonic component of the quasi-period-
ic signal and !0(t) denotes a slowly time-varying pitch



frequency estimated in advance. �an(t) and �!(t) mean
normal Brownian motion processes to describe random-
ness of amplitude changes and pitch 
uctuations with
the variance �2an(t) and �2!(t), respectively.

The actually observed signal is given by summation
of harmonic components and a zero-mean white Gaus-
sian measurement noise v(t) with variance �2v(t), i.e.,

y(t) = 1Tx(t) + v(t); (2)

where 1 = [1 � � � 1]T , superscripts T means the matrix
transpose. v(t),�!(t) and fx1(0); � � � ; xN (0)g are as-
sumed to be independent each other.

Our goal is to compute an optimum estimate x̂(t)
to the original signal x(t) from the given observation
sequence fy(� ) : 0 � � � tg. The solution can be
obtained by a way of the Kalman-Bucy �lter in which
the random 
uctuation term dB(t)x(t) is treated as a
state-dependent noise[6]. It yields the following di�er-
ential equation:

dx̂(t)

dt
= 
(t)x̂(t) +

1

�2v(t)
P (t)1[y(t)� 1T x̂(t)]: (3)

P (t) means a covariance error matrix:

P (t) = E[(x(t)� x̂(t))(x(t)� x̂(t))�] (4)

which satis�es the following Riccati equation:

dP (t)

dt
= 
(t)P (t) + P (t)
�(t)

�
1

�2v(t)
P (t)11TP (t) + � (t); (5)

where

� (t)=diag
�
f�2a1(t)+�2!(t)g�x

2
1(t);

� � � ; f�2aN (t)+N2�2!(t)g�x
2
N (t)

	
;

�x2n(t) = E[jxn(t)j2] and superscripts � means the com-
plex conjugate transpose.

3. STEADY STATE SOLUTION

If every parameter's 
uctuation is su�ciently small, the
interaction between di�erent harmonic components can
be neglected and then Eq.(3) separates into indepen-
dent scalar equations:

dx̂n(t)

dt
= [�

1

2
�2n(t) + jn!0(t)]x̂n(t)

+
pn(t)

�2v(t)
[y(t)� x̂n(t)] (6)

Figure 1: Pole allocation of the transfer function in the
z-plane. (a)Constant-BW type. (b)Constant-Q type.
(c)Composite type.

on each harmonic component, where pn(t) satis�es the
scalar Riccati equation:

dpn(t)

dt
= �2n(t)�x

2
n(t)� �2n(t)pn(t)�

1

�2v(t)
p2n(t); (7)

where

�2n(t) = �2an(t) + n2�2!(t):

When any parameter can be regarded as nearly con-
stant values, i.e., !0(t)!!0; �x

2
n(t)! �x2n; �

2
v(t)!�2v ;

�2an(t)! �2an; �
2
!(t)! �2!, Eq.(7) asymptotically con-

verges to

pn(t)!

r
x2n�

2
n�

2
v +

1

4
�4n�

4
v �

1

2
�2n�

2
v: (8)

In this steady state condition, Eq.(6) is simpli�ed as

dx̂n(t)

dt
=

�
�

s
x2n
�2v

�2n +
1

4
�4n + jn!0

�
x̂n(t)

+

�s
x2n
�2v

�2n +
1

4
�4n �

1

2
�2n

�
y(t): (9)

For x2n
�2
v

�2n �
1
4�

4
n, the transfer function to estimate the

harmonic component x̂n(t) from the observation y(t)
can be approximately described as

Hn(s) =
X̂n(s)

Y (s)
�

xn
�v
�n

s+ xn
�v
�n � jn!0

(10)

through the Laplace transform to Eq.(9), It is shown
that the transfer function involves a band-pass charac-
teristic of which center frequency is just located at each
harmonic frequency jn!0, i.e., a comb-like structure.



(a) For only amplitude 
uctuation
When only the amplitude 
uctuation exists uni-

formly in all harmonic components (�2a1 = � � � = �2aN =
�2a) but the pitch 
uctuation is omitted (�2! = 0), ev-
ery pole is allocated at equal spaces along the straight
line parallel to the imaginary axis on the left side of s-
plane (see Figure 1(a)). It means the transfer function
consists of pass-bands with a constant bandwidth just
located at each harmonic frequency. It is, therefore,
called \constant-BW comb �lter." The bandwidth is
dilated in proportion to the spacing between each pole
and imaginary axis, i.e., �a.
(b) For only pitch 
uctuation

When only the pitch 
uctuation exists but the am-
plitude 
uctuation is omitted (�2a1 = � � � = �2aN = 0),
every pole is allocated at equal spaces along the skew
line across the origin (see Figure 1(b)). It means the
bandwidth of pass-band just located at each harmonic
frequency is homogeneously dilated in proportion to
the harmonic frequency. It is so called \constant-Q
comb �lter." The more the gradient of pole allocation
sharpens, i.e., the smaller �!, the more the Q-factor
enlarges.
(c) For both 
uctuations

When both amplitude and pitch 
uctuations ex-
ist, the transfer function shows the following tendency.
Since the e�ect of amplitude 
uctuation �a becomes
dominant in small order n, the pole allocation is more
close to the constant-BW type in lower frequency. Op-
positely, the e�ect of pitch 
uctuation �! becomes dom-
inant in large order n and thus the pole allocation
is more close to the constant-Q type in higher fre-
quency (see Figure 1(c)). It means, therefore, the �lter
characteristic gradually changes from the constant-BW
type to the constant-Q type as the harmonic frequency
varies from low to high.

In either case, the ideal periodic signal input never
produce any distortion to the �lter output because the
�lter gain on each harmonic frequency always holds
Hn(jn!0) = 1.

4. ALL-POLE DIGITAL COMB FILTERS

From Eq.(10), the digital �lter formulation can be di-
rectly derived by the s-z transform using the impulse
invariant method, thus

Hn(z) =
�nTs

1� e(��n+jn!0)Tsz�1
; (11)

where Ts means a sampling interval and �n = xn
�v
�n.

The overall �lter architecture for harmonics extraction
is given by H(z) =

PN

n=1Hn(z). In the z-plane, each
pole is allocated at equal angles corresponding to the

harmonic frequency and pulled into more inside of the
unit circle in higher harmonic frequency. This structure
is indeed suitable for real-time processing.

Another description of the digital �lter can be de-
rived as follows. Using x̂n(t � Ts) as the initial value,
the analytical solution of Eq.(6) at the time t can be
represented as

x̂n(t) = �(t; t� Ts)x̂n(t� Ts)

+

Z t

t�Ts

�(t; � )
pn(�)

�2v(�)
y(� )d�; (12)

where

�(t; �) = e

R
t

�
(jn!0(s)�

pn(s)

�2
v
(s)

)ds
: (13)

Since any parameters can be regarded as varying
smoothly for the assumption of quasi-periodicity and
holding constant values for t� Ts � � � t, Eq.(12) can
be rewritten as

x̂n(t) = ef��n(t)+jn!0(t)gTs x̂n(t� Ts)

+�n(t)Tsy(t); (14)

where �n(t) = pn(t)=�
2
v(t). This representation means

the adaptive �lter operation such that pole parameters
can be adjusted to the time-varying phenomena. In the
steady state condition, especially, the above coincides
with Eq.(11).

5. EVALUATIONS

In the following simulations, we assume that the peri-
odic signal is synthesized by cutting out one cycle part
from a waveform of real voiced sound 'a' and connect-
ing it periodically, and the time-varying harmonics is
made arti�cially by imposing some amplitude and/or
pitch 
uctuations to the periodic signal. Our goal here
is to extract the original time-varying harmonics from
the contaminated version with white Gaussian noise by
using the �lters proposed above.

The �rst trial is performed on the harmonics in-
cluding only the amplitude 
uctuation, Kalman gains
are determined as adjusted to the amplitude 
uctu-
ation. The extracted waveform seems to be consid-
erably close to the original signal in the case of the
constant-BW comb �lter, but in the constant-Q type
some noise remains in higher frequency. This is be-
cause the constant-Q type causes the noise component
in higher frequency to be more absorbed for the wide
bandwidth as seen in the spectrum distribution (see
Figure 2). This result maintains an advantage of the
constant-BW comb �lter to the amplitude 
uctuation.

The next one is performed on the harmonics in-
cluding only the pitch 
uctuation. Kalman gains are



Figure 2: Spectral deformation caused by amplitude

uctuation. (a)Original signal. (b)Noise-corrupted sig-
nal. (c)Extracted result by the constant-BW comb �l-
ter. (d)Extracted result by the constant-Q comb �lter.

same with the above. The waveform collapse occurs
in the constant-BW type, but in the constant-Q type
the original signal is restored accurately as compared
with the constant-BW type. Since the pitch 
uctua-
tion dilates each bandwidth of harmonic component in
proportion to the harmonic frequency, the constant-Q
structure is suitable for holding the spectral shape of
the time-varying harmonics without any deformation
(see Figure 3). The constant-BW structure, however,
forces the spectral deformation signi�cantly in higher
frequency. It means the constant-Q comb �lter has a
robustness to the pitch 
uctuation.

6. CONCLUSION

We have presented optimal �lters for quasi-periodic sig-
nal extraction with a robustness to the amplitude and
pitch 
uctuations. To consider the time-varying phe-
nomena, the Itô stochastic di�erential equation is em-
ployed as the signal model. The �lter equation giving
the optimum estimate is derived by the Kalman-Bucy
�lter method. It has been shown that the transfer
function leads to the constant-BW comb structure, the
constant-Q comb structure and these mixture, corre-
sponding to the amplitude 
uctuation, the pitch 
uc-
tuation and both of them, respectively. Finally, useful-
ness of the constant-BW and constant-Q comb �lters
are veri�ed through some simulations.

Figure 3: Spectral deformation caused by pitch 
uc-
tuation. (a)Original signal. (b)Noise-corrupted signal.
(c)Extracted result by the constant-BW comb �lter.
(d)Extracted result by the constant-Q comb �lter.
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