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ABSTRACT

Recognition rates of speech recognition systems are known
to degrade substantially when there is a mismatch between
training and deployment environments. One approach to
tackling this problem is to transform the acoustic models
based on the channel distortion and noise characteristics
of the new environment. Currently, most model adaptation
strategies assume that the noise characteristics are station-
ary. We present results for using multiple noise distribu-
tions for the Whisper large vocabulary speech recognition
system. The Vector Taylor Series method for adaptation of
the distributions is used, and either a weighted average of
the noise states or the locally best noise states is used. Our
results indicate that for certain types of noise, significant
gains in recognition accuracy can be achieved.

1. INTRODUCTION

In order to achieve high recognition rates, the characteris-
tics of the training data should match the deployment data
closely. However, a variety of external noise conditions
and transfer function characteristics are encountered in real
world applications, and it is impossible to train acoustic
models for all possible conditions. New applications, e.g.
for hand-held devices, impose even more stringent demands
on noise compensation than previous applications.

Various methods are used to compensate for mismatch
between training and deployment conditions of a speech
recognition system. The two main ways of adapting to a
new environment are to “clean” the features passed to the
speech recognizer, and to alter the acoustic models em-
ployed in the recognizer. These techniques are called feature-
based methods and model-based methods, respectively. Cep-
stral Mean Normalization [8] and Spectral Subtraction [9],
and their extensions [6] are examples of feature-based meth-
ods.

Model adaptation attempts to alter the acoustic models,
such that they resemble closely the models attained under

matched conditions. One method for accomplishing this
is to sample the background noise of a new environment,
artificially mix this noise signal with the training set, and
retrain the system. However, this is impractical, due to the
large storage and time requirements.

A more efficient way of model adaptation is to estimate
the noise and transfer function distributions of a new envi-
ronment, and update the acoustic models, by combining the
existing clean speech acoustic models with the estimated
environment model.

2. PARALLEL MODEL COMBINATION

The goal of PMC is to update the observation distributions
such that they resemble those of a system matched to the
deployment environment.

The model for combining noise and speech in the signal
domain is shown in Eq.(1).

y = x ∗ h + n (1)

wherex is the clean speech signal,h is the impulse response
of the transfer function,n is the noise signal, andy is the
resulting noisy signal.

If we apply the power Mel spectrum transformation to
Eq.(1), we arrive at:

|Y (fi)|2 = |X(fi)|2|H(fi)|2 + |N(fi)|2 + ε (2)

whereε is an error term due to introduction of cross terms
in the Mel scale binning of frequencies, and omission of
cross terms when performing the power operation.

In the power spectrum domain, finding the corrupted
speech distributions is a matter of convolving the noise and
signal distributions.

Modern recognizers use Mel Frequency Cepstrum Com-
ponents, and delta and delta delta coefficients. The acoustic
models are mixtures of Gaussian distributions in the MFCC
domain. In the power spectrum domain, the distributions
are mixtures of log-normals.



The combination of the signal, noise and channel distri-
butions can still be accomplished using numerical integra-
tion. This however, is very costly and various methods have
been proposed to approximate this combination [1, 4].

2.1. Vector Taylor Series

One such approximation is the Vector Taylor series (VTS),
developed by Moreno [5] for log-spectrum features and ex-
tended by Acero [10, 7] for MFCC features. VTS has been
shown to perform very well for stationary noise. It also has
the advantage of being fast.

To see how the VTS method works, we first complete
the transformation of Eq.(2) into the cepstrum domain. Tak-
ing the log and multiplying by the cosine transformC we
arrive at:

Cln|Y |2 = Cln|X|2 + Cln|H|2 (3)

+ Cln(1 + exp(|N|2 − |H|2 − |X|2)

which can be rewritten as:

y = x + h + g(n− x− h) (4)

whereg(z) = Cln(1 + eC−1z). In order to find the up-
dated distributions, each GMM component is transformed
independently.

Equation (4) is linearized using the Vector Taylor Se-
ries:

yVTS = x0 + h0 + g(n0 − x0 − h0) (5)

+
δg
δx

(x− x0) +
δg
δh

(h− h0) +
δg
δn

(n− n0)

The mean and variance of each component of the updated
distributions are found by evaluating the expected value
E(yVTS) and varianceΘ(yVTS) of Eq.(5) expanded at the
modes of each component of the speech, noise and channel
distortion distributions. Thus, the standard VTS method re-
places the observation distributions for clean speechp(x|si)
with observation distributions for noisy speechp(y|si). For
a more detailed exposition of the VTS method, see [5, 7,
10].

The standard VTS method uses a single multivariate
distribution to model the noise. In the following we will be
using multiple component/state noise distributions. There-
fore, the observation distributions will be dependent on the
speech state as well as on the noise statep(y|si, rj). To
produce these observation distributions, the standard VTS
method is applied once for each noise state.

3. HIDDEN MARKOV MODEL DECOMPOSITION

Varga and Moore [1] introduced the decomposition of
speech and noise by the method of Hidden Markov Model

Decomposition. Figure 1 shows the Bayesian net represen-
tation of two hidden Markov models [2], and the observa-
tion sequence that results from combining the outputs of the
two models. The speech HMM is represented by the state
sequences1, s2, . . . , sM with observationsx1,x2, . . . ,xM .
Similarly, the noise HMM is represented by the state se-
quencer1, r2, . . . , rM with observationsn1,n2, . . . ,nM .
The resulting distributions of the observed noisy speech
y1, y2, . . . ,yM , can be obtained by the methods discussed
above. We used VTS for this purpose.
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Fig. 1. Bayes net representation of the combined speech-
noise model. The speech HMM is shown at the top, and the
noise HMM is at the bottom.

Parallel Viterbi decoding[1] results in the optimum state
sequences of both speech and noise:

{Ŝ, R̂} = argmax
k,l

P (Y, Sk, Rl) (6)

whereSk = {s1,k, s2,k, . . . , sM,k} is a particular speech
state sequence andRl is a particular noise state sequence.

Although Parallel Viterbi leads to an optimum decoding
of the speechandnoise state sequences, we are not usually
interested in the state sequence of the noise process. It may
therefore be more reasonable to marginalize over all noise
state sequences for a given speech state sequence:

{Ŝ} = argmax
k

∑

l

P (Y, Sk, Rl) (7)

Using a multi-state noise model incurs a cost, both in
the evaluation of observation likelihoods, and in the decod-
ing. The increase in complexity of the likelihood evaluation
is linear in the number of states of the noise model. For ex-
ample, for a 4 state noise model, the number of observation
likelihoods that need to be evaluated is 4 fold.

The computational complexity of exact evaluation of
Eq.(6) using Viterbi is the same as that of Eq.(7) using a
hybrid Viterbi/forward algorithm. However, due to the long
term relationships imposed by the language model, large
vocabulary speech recognition systems use an approximate
Viterbi algorithm based on token passing. In this scenario,



the additional cost of Viterbi may be much greater than that
of the Viterbi/forward hybrid algorithm.

In the experiments reported below, we assess the dif-
ference between these two schemes, using the simplified
model shown in Figure 2.

In this simplified model, we have removed the dynamic
distributions of the noise process. In this case, the evalua-
tion of Eq.(6) reduces to picking the most likely noise state
for each combined speech/noise state,

p(y|si, r̂i) = max
k

p(y|si, ri,k) (8)

and the evaluation of Eq.(7) reduces to marginalizing over
the noise states

p(y|si) =
∑

k

p(y|si, ri,k). (9)

The experiments give a lower bound on the expected accu-
racy of the two schemes when the dynamic distributions for
the noise process are used.
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Fig. 2. Network used in experiments. VTS has been used
to find the speech and noise state conditional observation
distributions and the dynamic links of the noise distribution
have been removed.

4. EXPERIMENT AND RESULTS

Experiments were conducted using the Whisper Large Vo-
cabulary Speech Recognition system. For the experiments,
a vocabulary size of 5000 words was used with a tri-gram
language model. The acoustic models consisted of 6000
senones (shared observation models), each with 20 gaus-
sian mixtures. The system was trained on 16000 sentences
of clean speech data from the Wall Street Journal data set.
The test set consisted of 167 sentences from the Wall Street
Journal spoken by female speakers. Noise was artificially
added to each test sentence at 10 dB SNR.

4.1. Noise

Two types of noise were used in the experiments, Babble
noise and Roller coaster noise.

Babble noise consists of a large number of speakers
talking simultaneously. The state sequence of the 4 state

model for Babble noise is shown in Figure 3. As can be
seen, the noise tends to stay in a state for a few frames be-
fore jumping to another state, however, the transitions be-
tween states do not exhibit any apparent structure.
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Fig. 3. State sequence for babble noise.

Roller coaster noise is a repetitive sound of a roller
coaster moving on a track, similar to the sound of a locomo-
tive. As can be seen in Figure 4 the state sequence is highly
regular, moving from one state to the next in a systematic
manner. The state sequences for the 8 component models
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Fig. 4. State sequence for roller coaster noise.

exhibited similar structure.

4.2. Multiple component/state observation models

In order to evaluate the effect of introducing multiple state/
component models, 1, 4 and 8 component gaussian mixture
noise models were trained. 20 - 50 models were trained
for each noise type and model size, and the best model was
used. This was done to avoid local minima.

In the experiment labeled MAX in Table 1, the maxi-
mum likelihood noise state was chosen in the observation
likelihood evaluation, according to Eq.(8). For example,
for the 4 state noise model, 4 noise-senones models were
stored for each original senone and the highest observation
likelihood of each set of 4 models was used when decoding.

In the experiments labeled SUM in Table 1, we
marginalized over the noise states (see Eq.(9)). This can be
incorporated into the observation likelihood evaluation of a



Babble Noise, 10dB SNR

1 st./cmp. 4 st./cmp. 8 st./cmp.

MAX 15.10% 14.51% 9.68 %
∆ WER -3.91 % - 36.0%

SUM 15.10% 14.81% 9.53%
∆ WER -1.92% -37.0%

Roller Coaster Noise, 10dB SNR

1 st./cmp. 4 st./cmp. 8 st./cmp.

MAX 6.68% 6.39% 6.50 %
∆ WER -4.34 % - 2.69%

SUM 6.68% 6.50% 6.46%
∆ WER -2.69% -3.29%

Table 1. Word error rate for Babble noise (upper half)
and Roller Coaster noise (lower half) at 10db SNR, for
maximization over noise states (MAX) and marginalizing
over noise states (SUM), and different number of compo-
nent/state noise models

GMM based speech recognizer by increasing the number of
mixtures. Since each senone has 20 gaussian components,
the resulting distributions had 20, 80 and 160 components,
for the 1, 4 and 8 component cases, respectively.

For Babble noise, the word error rate was 31.09% when
clean speech acoustic models were used (i.e. mismatched
training and deployment conditions). When the system was
trained and tested on speech corrupted by babble noise (i.e.
matched training and deployment conditions), the error rate
dropped to 8.56%.

The upper half of Table 1 shows the effect of using 1, 4
and 8 component/state models for Babble noise. The word
error rate drops by 1.92% when 4 states are used. When 8
component noise models are used, the word error rate drops
by 37% percent ( from 15.1% to 9.53%). This is a signif-
icant drop in word error rate, due to more accurate mod-
eling of the noise process. Comparing the maximization
method Eq.(6) to the method of marginalizing over noise
states Eq.(7) shows that the two methods perform similarly
well.

For Roller-Coaster noise, the word error rate was
10.04% for the mismatched condition and 6.31% for the
matched condition. The lower half of Table 1 shows the ef-
fect of using 1, 4 and 8 component/state models for Roller
Coaster noise. In this case there is a drop in error rate when
more accurate noise models are used. However, the word
error rate for a single component is close to the matched
condition, and the advantage of more accurate noise mod-
els is not as significant. Again, SUM and MAX perform
similarly well.

5. DISCUSSION

We have shown that the use of more accurate, multiple com-
ponent/state noise model improves recognition accuracy of
a large vocabulary speech recognizer when the input speech
signal is corrupted by additive non-stationary noise.

We expect that introducing the dynamic links into the
noise model will improve word error rate for noise types
that have considerable temporal structure, such as roller
coaster noise.

Our experiments also indicate that the the two decod-
ing methods, i.e. MAX and SUM, perform similarly well.
However, finding the optimal noise state sequence as op-
posed to marginalizing over noise states results in differ-
ent decoding algorithms with different complexity. Future
work will asses this difference in the context of a large vo-
cabulary speech recognition system.
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