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ABSTRACT matched conditions. One method for accomplishing this

. - is to sample the background noise of a new environment,
Recognition rates of speech recognition systems are known_ .. - A ) . . o
. . ; artificially mix this noise signal with the training set, and
to degrade substantially when there is a mismatch betweenretrain the system. However, this is impractical, due to the
training and deployment environments. One approach toIar e storage and iime re uir’ements '
tackling this problem is to transform the acoustic models gA moregefficient way 0? model adéptation is to estimate
based on the _channel distortion and noise character|§tlcs[he noise and transfer function distributions of a new envi-
of the new environment. Currently, most model adaptation

strategies assume that the noise characteristics are stationrpnment’ and update the acoustic models, by combining the

. . ) o existing clean speech acoustic models with the estimated
ary. We present results for using multiple noise distribu- .
. . ... _environment model.
tions for the Whisper large vocabulary speech recognition
system. The Vector Taylor Series method for adaptation of
the distributions is used, and either a weighted average of 2. PARALLEL MODEL COMBINATION

the noise states or the locally best noise states is used. Our h | of i h . o
results indicate that for certain types of noise, significant | N€ g9oal of PMC is to update the observation distributions
gains in recognition accuracy can be achieved. such that they resemble those of a system matched to the

deployment environment.
The model for combining noise and speech in the signal
1. INTRODUCTION domain is shown in Eq.(1).

In order to achieve high recognition rates, the characteris- y=xzxh+n Q)
tics of the training data should match the deployment data ) . _ .
closely. However, a variety of external noise conditions Wherez is the clean speech signalis the impulse response
and transfer function characteristics are encountered in reaPf the transfer functions is the noise signal, anglis the
world applications, and it is impossible to train acoustic '€Sulting noisy signal. ,
models for all possible conditions. New applications, e.g. _ || We apply the power Mel spectrum transformation to
for hand-held devices, impose even more stringent demand&£d-(1), we arrive at:
on noise compensation than previous applications. NEE NE NE NP
Various methods are used to compensate for mismatch YUP = IXGPHGE+ NG e (@)
between training and deployment conditions of a speechwheree is an error term due to introduction of cross terms
recognition system. The two main ways of adapting to a in the Mel scale binning of frequencies, and omission of
new environment are to “clean” the features passed to thecross terms when performing the power operation.
speech recognizer, and to alter the acoustic models em- In the power spectrum domain, finding the corrupted
ployed in the recognizer. These techniques are called featurgpeech distributions is a matter of convolving the noise and
based methods and model-based methods, respectively. Cegignal distributions.
stral Mean Normalization [8] and Spectral Subtraction [9], Modern recognizers use Mel Frequency Cepstrum Com-
and their extensions [6] are examples of feature-based methponents, and delta and delta delta coefficients. The acoustic
ods. models are mixtures of Gaussian distributions in the MFCC
Model adaptation attempts to alter the acoustic models,domain. In the power spectrum domain, the distributions
such that they resemble closely the models attained undeiare mixtures of log-normals.



The combination of the signal, noise and channel distri- Decomposition. Figure 1 shows the Bayesian net represen-
butions can still be accomplished using numerical integra- tation of two hidden Markov models [2], and the observa-
tion. This however, is very costly and various methods have tion sequence that results from combining the outputs of the

been proposed to approximate this combination [1, 4]. two models. The speech HMM is represented by the state
sequencsy, s, . . ., spy With observations;, xa, ..., xy;.

2.1. Vector Taylor Series Similarly, the noise HMM is represented by the state se-
quencery, s, ...,y With observationsa, n,, ..., ny,.

One such approximation is the Vector Taylor series (VTS), The resulting distributions of the observed noisy speech

developed by Moreno [5] for log-spectrum features and ex- Y1, V2, . ...y, can be obtained by the methods discussed

tended by Acero [10, 7] for MFCC features. VTS has been gpove. We used VTS for this purpose.
shown to perform very well for stationary noise. It also has

the advantage of being fast.
To see how the VTS method works, we first complete e e e @

the transformation of Eq.(2) into the cepstrum domain. Tak-
ing the log and multiplying by the cosine transfothwe
arrive at:

Cin|Y|? = Cin|X|? + Cin|H[? (3) @ @

+ Cin(1 + exp(IN|* — [H? — |X]?) @ @

which can be rewritten as: G @
y=x+h+gnh-x—h) 4)

Fig. 1. Bayes net representation of the combined speech-

noise model. The speech HMM is shown at the top, and the
noise HMM is at the bottom.

whereg(z) = Cin(l + ec_lz). In order to find the up-
dated distributions, each GMM component is transformed

independently.
~ Equation (4) is linearized using the Vector Taylor Se- Parallel Viterbi decoding[1] results in the optimum state
ries: sequences of both speech and noise:
yVTS = Xg+ h() + g(ng — X0 — h()) (5) {S, R} = argmaxP(Y, Sk, Rl) (6)

b 5 5 ol

+ $(x—x0) + 5o (h—ho) + 32 (n —no) R

ox oh on where S, = {s1k,S2k,--.,Smk} IS a particular speech
The mean and variance of each component of the updatedtate sequence ark} is a particular noise state sequence.
distributions are found by evaluating the expected value Although Parallel Viterbi leads to an optimum decoding

E(yVTS) and varianc®(y VTS) of Eq.(5) expanded atthe ~ Of the speeclandnoise state sequences, we are not usually

modes of each component of the speech, noise and channdterested in the state sequence of the noise process. It may
distortion distributions. Thus, the standard VTS method re- therefore be more reasonable to marginalize over all noise

places the observation distributions for clean spegghs;) state sequences for a given speech state sequence:
with observation distributions for noisy speedly|s;). For .

a more detailed exposition of the VTS method, see [5, 7, {5} = argglaxZP(Y, Sk, Bi1) )
10]. [

The standard VTS method uses a single multivariate  Using a multi-state noise model incurs a cost, both in

distribution to model the noise. In the following we will be  the evaluation of observation likelihoods, and in the decod-
using multiple component/state noise distributions. There- ing. The increase in complexity of the likelihood evaluation
fore, the observation distributions will be dependent on the s |inear in the number of states of the noise model. For ex-

speech state as well as on the noise st@gsi,r;). TO  ample, for a 4 state noise model, the number of observation
produce these observation distributions, the standard VTSjikelihoods that need to be evaluated is 4 fold.

method is applied once for each noise state. The computational complexity of exact evaluation of
Eq.(6) using Viterbi is the same as that of Eq.(7) using a

3. HIDDEN MARKOV MODEL DECOMPOSITION hybrid Viterbi/forward algorithm. However, due to the long
term relationships imposed by the language model, large

Varga and Moore [1] introduced the decomposition of vocabulary speech recognition systems use an approximate

speech and noise by the method of Hidden Markov Model Viterbi algorithm based on token passing. In this scenario,



the additional cost of Viterbi may be much greater than that model for Babble noise is shown in Figure 3. As can be

of the Viterbi/forward hybrid algorithm. seen, the noise tends to stay in a state for a few frames be-
In the experiments reported below, we assess the dif-fore jumping to another state, however, the transitions be-

ference between these two schemes, using the simplifiedween states do not exhibit any apparent structure.

model shown in Figure 2.

In this simplified model, we have removed the dynamic T T e T i
distributions of the noise process. In this case, the evalua- A0 H | | “H\
tion of Eq.(6) reduces to picking the most likely noise state 2 “ | L “ \ \‘\_‘H‘.J‘._“H\ 1] I
for each combined speech/noise state, ‘ T‘ ﬂ CTT T T T ‘ \

p(ylsi, ) = masxp(ylse, i) ® IR

| |
: o L]
and the evaluation of Eq.(7) reduces to marginalizing over T \ ‘ L
the noise states —

p(yls:) = p(ylsi,rik)- ©)
k

Fig. 3. State sequence for babble noise.

The experiments give a lower bound on the expected accu-  Roller coaster noise is a repetitive sound of a roller
racy of the two schemes when the dynamic distributions for coaster moving on a track, similar to the sound of a locomo-

the noise process are used. tive. As can be seen in Figure 4 the state sequence is highly
regular, moving from one state to the next in a systematic
e a vee @ manner. The state sequences for the 8 component models

vy % (innEany
A
Fig. 2. Network used in experiments. VTS has been used .

to find the speech and noise state conditional observation
distributions and the dynamic links of the noise distribution
have been removed. o

Frame

Fig. 4. State sequence for roller coaster noise.
4. EXPERIMENT AND RESULTS

exhibited similar structure.
Experiments were conducted using the Whisper Large Vo-

cabulary Speech Recognition system. For the experiments, 5 - \yjtiple component/state observation models

a vocabulary size of 5000 words was used with a tri-gram

language model. The acoustic models consisted of 6000In order to evaluate the effect of introducing multiple state/
senones (shared observation models), each with 20 gaussomponent models, 1, 4 and 8 component gaussian mixture
sian mixtures. The system was trained on 16000 sentence®oise models were trained. 20 - 50 models were trained
of clean speech data from the Wall Street Journal data setfor each noise type and model size, and the best model was
The test set consisted of 167 sentences from the Wall Streetised. This was done to avoid local minima.

Journal spoken by female speakers. Noise was artificially ~ In the experiment labeled MAX in Table 1, the maxi-

added to each test sentence at 10 dB SNR. mum likelihood noise state was chosen in the observation
likelihood evaluation, according to Eq.(8). For example,
4.1. Noise for the 4 state noise model, 4 noise-senones models were

stored for each original senone and the highest observation

Two types of noise were used in the experiments, Babblelikelihood of each set of 4 models was used when decoding.
noise and Roller coaster noise. In the experiments labeled SUM in Table 1, we

Babble noise consists of a large number of speakersmarginalized over the noise states (see Eq.(9)). This can be
talking simultaneously. The state sequence of the 4 stateincorporated into the observation likelihood evaluation of a



|

Babble Noise, 10dB SNR

|

] | 1st/cmp.| 4 st./cmp.] 8 st./cmp.|

MAX \ 15.10% | 14.51% 9.68 %
AWER | -391% | -36.0%
SUM \ 15.10% | 14.81% 9.53%
AWER | -1.92% -37.0%

] Roller Coaster Noise, 10dB SNR

|

] | 1st/cmp.| 4 st./cmp.| 8 st./cmp.]

MAX \ 6.68% 6.39% 6.50 %
AWER | -434% | -2.69%
SUM \ 6.68% 6.50% 6.46%
AWER | -2.69% -3.29%

5. DISCUSSION

We have shown that the use of more accurate, multiple com-
ponent/state noise model improves recognition accuracy of
a large vocabulary speech recognizer when the input speech
signal is corrupted by additive non-stationary noise.

We expect that introducing the dynamic links into the
noise model will improve word error rate for noise types
that have considerable temporal structure, such as roller
coaster noise.

Our experiments also indicate that the the two decod-
ing methods, i.e. MAX and SUM, perform similarly well.
However, finding the optimal noise state sequence as op-
posed to marginalizing over noise states results in differ-

Table 1. Word error rate for Babble noise (upper half) ent decoding algorithms with different complexity. Future
and Roller Coaster noise (lower half) at 10db SNR, for work will asses this difference in the context of a large vo-

maximization over noise states (MAX) and marginalizing
over noise states (SUM), and different number of compo-
nent/state noise models

GMM based speech recognizer by increasing the number of

(1]

mixtures. Since each senone has 20 gaussian components[2]

the resulting distributions had 20, 80 and 160 components,
for the 1, 4 and 8 component cases, respectively.

For Babble noise, the word error rate was 31.09% when
clean speech acoustic models were used (i.e. mismatched
training and deployment conditions). When the system was
trained and tested on speech corrupted by babble noise (i.e.
matched training and deployment conditions), the error rate
dropped to 8.56%.

The upper half of Table 1 shows the effect of using 1, 4
and 8 component/state models for Babble noise. The word
error rate drops by 1.92% when 4 states are used. When 8
component noise models are used, the word error rate drops
by 37% percent ( from 15.1% to 9.53%). This is a signif-
icant drop in word error rate, due to more accurate mod-
eling of the noise process. Comparing the maximization
method Eg.(6) to the method of marginalizing over noise
states Eq.(7) shows that the two methods perform similarly
well.

For Roller-Coaster noise, the word error rate was
10.04% for the mismatched condition and 6.31% for the
matched condition. The lower half of Table 1 shows the ef-

(4]

(5]

(6]

(7]

(8]

[9]

fect of using 1, 4 and 8 component/state models for Roller (10]

Coaster noise. In this case there is a drop in error rate when
more accurate noise models are used. However, the word
error rate for a single component is close to the matched
condition, and the advantage of more accurate noise mod-
els is not as significant. Again, SUM and MAX perform
similarly well.

cabulary speech recognition system.
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