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ABSTRACT

Of increasing importance is estimation of internal link parameters
in communications networks. Multicast probes are a way to gather
statistics about internal links from edge node measurements. The
problem of estimating link loss probabilities for a multicast dis-
tribution tree is examined here. Our model assumes loss statistics
are distributed to session participants by a network protocol such
as RTCP. We propose a decentralized algorithm for ML estimation
of the link loss probabilities in a chain of nodes rooted at the source
node of the multicast distribution tree and terminating at a given
leaf. An expression for the Cramer-Rao bound and an approxi-
mate form for the probability distribution function of the estimator
are given. The performance of the algorithm is evaluated using
computer simulations for a bottleneck detection application.

1. INTRODUCTION

One of the most fundamental problems in operating a computer
network is measuring/predicting the traffic intensity and the prob-
abilities of successful transmission of a packet in the network over
a certain time interval. Knowledge of this information is useful
for a large number of applications that are related to areas such
as network design, management, access control, monitoring and
pricing. The problem of estimating the traffic intensity in net-
work links based on repeated measurements of edge node traffic
has been studied recently [1]. The corresponding area of study is
called ”Network Tomography”. A problem area closely related to
the one of Network Tomography is estimating internal link loss
probabilities in a network given summary statistics of all nodes
in the tree. This problem is examined here using a method based
on loss statistics gathered by independent transmissions of probe
packets in a multicast distribution tree, where loss statistics are
gathered at the leaves of the tree using the RTCP protocol.

2. NETWORK TOMOGRAPHY

The problem of Network Tomography was first proposed in [1].
The name comes from the fact that the internal link traffic rates
are estimated based only on estimates of total originating and ter-
minating traffic rates. Recent work has focused on Network To-
mography using end-to-end measurements [3,2,4]. The practical
implementation of tomography has been hampered for several rea-
sons. The first has to do with the scalability of tomography meth-
ods. In a continuously expanding network with densely connected
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nodes, such as the Internet, the number of internal nodes grows
with a rate that makes solving the inverse problem by tomography
methods virtually impossible for more than a few dozen nodes.
The second reason has to do with the fact that the Internet is a
complex heterogeneous network with unknown structure which is
administratively diverse. Finally most tomography methods have
relied on statistical independence between link loss rates, the so-
called spatial independence assumption. This assumption is vio-
lated in actual networks due to factors such as “slow restart” after
packet loss [5] and multiuser interference in wireless links.
From the references mentioned previously the one that is closest
in spirit to this paper is [3]. In [3] a method to infer the internal
single-link packet loss characteristics using end-to-end multicast
probe measurements is presented. The multicast method of [3] is
derived under the assumption that the transmission losses are in-
dependent for different links and different probe packets. Only
leaf nodes communicate their loss rates and computations are per-
formed at all leaf nodes of the tree to reconstruct the loss rates at
internal nodes of the tree. The computational complexity of the al-
gorithm in [3] increases proportionally to 2k where k is the depth
of the tree.
In contrast our multicast method focuses on chains of nodes rooted
at the source node of the tree and ending at each leaf node. Com-
putation sare performed at each chain independently of the other
chains, thus the complexity of our method increases only linearly
with respect to the depth of the tree. Independence assumptions
are made among the transmission of different probes but no spatial
independence assumption is required regarding the transmission of
a single probe across subsequent links in the chain. The method
described here is based on availability of statistical data on inter-
nal link loss rates. Such data is provided by the well known RTCP
protocol. RTCP is the current standard for real–time multicast ap-
plications [6]. Among other data the protocol provides to the ses-
sion participants is the measured loss rate for each pair of nodes
in a session. A task of interest in many applications is estimation
of a bottleneck link in a chain of links. The bottleneck link is de-
fined as the link with maximum loss probability and is frequently
where degradation of performance in the network begins. Identifi-
cation of this link allows a protocol to use this information to take
administrative measures, e.g to force rerouting of data around the
bottleneck.

3. ESTIMATION OF LINK LOSS PROBABILITES IN A
MULTICAST TREE

In this paper we examine the problem of estimating the probability
of successful transmission for each link in a multicast distribution
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Fig. 1. Multicast Distribution Tree. All nodes in tree participate
in a session during which cummulative multicast link losses are
reported to all participants, e.g via RTCP. The solid circles denote
edge nodes to which multicast packets are sent from the source
node. The path C denotes the particular chain investigated by the
ML algorithm using loss statistics along chain C only.

tree, based on loss statistics of the number of probe packets sent
from the source node (sender) to the leaf nodes(receivers) of the
tree. Multicast transmission provides efficient delivery of a packet
to an arbitrary number of receivers by replicating the packet within
the network at fan-out points along a distribution tree rooted at
the transmission source. Like previous authors [3,4] we focus our
attention on multicast transmission of packets because the distri-
bution of packets across the links of a multicast tree provides us
with a tractable topology on which we can perform mathemati-
cal calculations. Note that the abstraction of a multicast distribu-
tion tree masks the actual (unknown) topology of the underlying
network and provides us with a set of cooperating nodes that ex-
change statistics. We restrict our attention to the estimation of
the set of loss probabilities along the chain of links in the path
from the source to a leaf node, using each leaf node separately.
This allows us to develop estimation methods which do not require
imposition of spatial independence assumptions. Expressions for
the Maximum Likelihood (ML) estimators of these quantities are
derived and are shown to be unbiased. Also a lower bound, the
Cramer-Rao (CR) bound, for the covariance matrix of the estima-
tors is calculated and it is proved that these estimators attain this
bound. Finally an asymptotic density for the estimator of the link
loss probability of every link is given.

4. STATISTICS OF THE MEASUREMENTS

Assume that the multicast distribution tree topology is like the one
depicted in the Figure 1. By the term path or chain C we will mean
the series of nodes from the source 0 to a specified leaf node l.
Node 0 broadcasts N packets to leaf nodes. The number of packets
that node i in the path successfully receives is Ai. The Ai’s are
decreasing monotonically with respect to i i.e A0 > A1 > : : : Ak.
This information is distributed by RTCP to all session participants.
The number of packets that go only down to node i and stop idle
(die) there are Ni. In contrast to the Ai’s the Ni’s are not ordered.
The reader should carefully note the difference between these two
quantities because it is crucial for the rest of the derivations. The
Ni packets are a subset of the Ai packets. The following relations

will hold:

N1 = A1 �A2

N2 = A2 �A3

...

Nk�1 = Ak�1 �Ak

N0 = N �
kX
i=1

Ni

(1)

The event that node i receives successfully a packet will be de-
noted by Ii = 1 (I stands for the indicator function) , and the event
that node i does not successfully receive a packet will be denoted
by Ii = 0; : : : ; k. The event fI0 = 1; I1 = 1; : : : ; Ii = 1; Ii+1 =

0g is the event that a packet sent from the source node will die
at node i. The probabilities f�ig of these events are parameters
called the probe survivor probabilities and are related to the indi-
vidual link loss probabilities of interest.We note that

Pk

i=0 �i = 1

so it is sufficient to specify the k parameters � = [�0; : : : ; �k�1]
>

For each source-destination path C containing k + 1 nodes
there are k + 1 possible outcomes whenever a packet is sent from
the source. Either the packet dies at the first node, or the packet
dies at the 2nd node : : :, or the packet dies at the kth node, or finally
it arrives successfully at the leaf node. Let �i = I0I1 : : : Ii(1 �
Ii+1) denote the indicator function of the event that the packet dies
at the i-th node. Then trivially, p(�0; : : : ;�k;�) = �

�0

1 : : : �
�k
k

where
Pk

i=1�i = 0;�i�f0; 1g; �k = 1 �
Pk�1

i=0 �i. Under the
assumption that the N transmitted probe packets are transmitted
independently the joint probability distribution of the number of
packets that die at each of the nodes is a multinomial.

p(N;�) =
N !

N0! : : : Nk!
�
N0
0 : : : �

Nk�1
k�1 (1�

k�1X
i=0

�i)
N�
Pk�1
i=0

Ni

(2)
where (N) = (N0; : : : ; Nk);

Pk

i=0Ni = N . Note that no spatial
independence asssumptions are required for the validity of (2).

The form of the ML estimator for � is well known for the
multinomial distribution (2) and takes the form:

^
�= (

N0

N
; : : : ;

Nk�1

N
) (3)

The ML estimator (3) is unbiased and efficient, i.e it’s covari-
ance matrix attains the Cramer-Rao bound which is equal to the
inverse of the k � k Fisher information matrix F�1� . The element
of the FIM F� in row i and column j is given by the formula:

[F�]i;j = �E [
@2

@�i@�j
ln p(N;�)] (4)

@ ln p(N;�)

@�i
=

Ni

�i
�
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0
Ni

1�
Pk�1

0
�i

(5)
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We observe that as N !1 the elements of the inverse Fisher

Information matrix [F�]i;j tend to zero. This implies that
^
� is

consistent i.e it’s covariance goes to zero with N.

5. ESTIMATION OF LINK LOSS PROBABILITES

The main goal of our effort is to calculate the probability of suc-
cessful transmission for each link in the network. For example
if we want to calculate this probability for the link that connects
node i � 1 in a path with node i we are interested in the quantity

Vi
4
= Pr(Ii = 1jIi�1 = 1); i = 1; : : : ; k. Applying the law of

conditional probability we get:

Vi =

Pk

j=i �jPk

j=i�1 �j
; i = 1; : : : ; k (8)

Thus using the ML invariance property, the ML estimator for the
link-loss probability 1� Vi is specified by the MLE of Vi

^
Vi =

Pk

j=i

^
�jPk

j=i�1

^
�j

=

Pk

j=iNjPk

j=i�1Nj

=

Pk

j=iAj �Aj+1Pk

j=i�1 Aj �Aj+1

=
Ai

Ai�1

=

PN

j=1 I
(j)

iPN

j=1 I
(j)

i�1

(9)

Furthermore the CR bound on estimation error for unbiased esti-
mators ofV = [V1; : : : ;Vk]> isF�1V = [5�g(�)]F�1� [5�g(�)]

>

where g(�) = [V1(�) : : :Vk(�)]
>. The following recursive for-

muli will be useful for computing 5Vk :
Vi = (Vi+1 : : :Vk)�1 �kP

k
j=i�1 �j

, for i = 1 : k � 1

The family of binary random variables (rv’s) fI(j)i gj are indi-
cators that the jth probe has been successfully received by node i
or not. We have assumed that this family consists of independent
and identically distributed (iid) rv’s. The assumption of indepen-
dence indicates that different transmissions of packets in the net-
work, are independent. This assumption is valid as long as the i-th
probe is sent only after the (i-1)st probe has been received and the
network is stable over the N probe transmissions. It is up to the
protocol to choose the time-separation between subsequent pack-
ets so as to achieve temporal independence for the transmission
of packets. The assumption that the fI(j)i gNj=1 are identically dis-
tributed implies that the network loss behaviour does not change
over the probing interval. Although this may not hold for large
time periods (there are periods of high congestion in the network
and periods of low traffic) this is a reasonable assumption when
the multicast transport delays are small and probes are sent in rapid
succession.

The mean value of I(j)i is E [I(j)i ] = Pr(I0 = 1; : : : ; Ii =

1)
4
= pi and the variance will be var[I

(j)

i ] = pi(1 � pi). By
applying the Central Limit Theorem (CLT) to the sums of the iid
rv’s we can approximate the distribution of the numerator and the
denominator of (9). Applying the CLT we have the approximation

1p
N

PN

j=1
I
(j)

i � N (
p
Npi; pi(1 � pi)). Under the simplify-

ing assumption that Vi follows the distribution of the ratio of two
independent Gaussians as N increases to infinity, it is straightfor-
ward to show that the pdf of the ratio of two indepent Gaussian
rv’s with means �1 and �2 respectively and variances �12 and �22

respectively, is

fX(x) =
e
B2�AC

2A

��1�2

�
e
� Bp

A

A
+

r
2�

A

B

A
sign(B)

�1
2
�Q(

r
B2

A
)
��

(10)
where

A =
x2

�21
+

1

�22
; B =

�1x

�21
+

�2

�22
; C =

�21
�21

+
�22
�22

(11)

and Q(x) is the standard Gaussian integral
R
x

1 1p
2�
e�

w2

2 dw.

Using �1 =
p
Npi; �2 =

p
Npi�1; �

2
1 = pi(1 � pi); �

2
2 =

pi�1(1�pi�1) in (10) and (11) we obtain the marginal distribution

f ^
Vi
(x) for estimate

^
V i computed from chain C. This can be used

to compute the estimator bias, variance and threshold excedance
probability and confidence intervals.

6. COMBINATION OF SINGLE CHAIN ESTIMATES

In order to improve the performance of the single chain method it
will be necessary to fuse the estimates of common link survival
probabilities (�i’s) obtained from two different leaves (chains).
Assume there are two chains C1 and C2 that share a common
link i with survival probability �i. The number of packets that
are transmitted down to a node i and die there for both chains
N
(j)

i ; i = 0 : : : k; j = 1; 2 are dependent in a complicated way
due to the fact that they share common link information. One ap-
proach that would enable us to improve our estimates of Vi, would
be to use the Best Asymptotic Normal (BAN) property of the ML

estimator
^
�i. Let

^
�C1 and

^
�C2 be estimates of �i obtained from

chains C1 and C2 terminating at leaves l1 and l2 respectively. The
BAN property asserts that asymptotically the ML estimators are

jointly Gaussian i.e
p
N [
^
�C1 � �1;

^
�C2 � �2]

>
� N (0; F�1C1C2

)

where 0 = [0; 0]> and FC1C2 is the FIM. We can then apply ML

estimation to estimate �i from [
^
�C1 ;

^
�C2 ]

>
.

Using this approach we can also compute the Fisher Informa-
tion matrix for this model and compare it to the results of the single
chain model. By comparing the CRB for the multiple chains to the
CRB for a single chain we can estimate the additional number of
probes needed for the single chain method to achieve the same
performance as the multiple chain method.

7. NUMERICAL RESULTS

In order to evaluate numerically the performance of our method we
ran computer simulations in C++. Link loss probabilities were as-
signed at random and the “bottleneck” was defined as the link with
max loss probability. For each link in the chain the probe packet
dies or is transmitted successfully to the next node in the node
chain, according to a stationary probability over the simulation. In
Fig. 2 the probability distribution function (pdf) of the estimator
^
V i given in (10) is plotted for different numbers of probe packets.
Note that as the number of packets increases the pdf concentrates



around it’s mean value, which supports our argument that the de-
rived estimator is consistent. In Fig.3 the empirical variance of the

proposed estimator for
^
Vi and the corresponding values of the CR

bound are are plotted vs the number of probe packets sent. The
transformation from the � parameters to the V parameters doesn’t
preserve unbiaseness thus the variance of the estimator in (9) can
take lower values than those of the CR bound. For fairly small
number of probe packets sent in our case, due to the BAN prop-
erty the two curves take the same values. In Table 1 the results of
the Smirnov-Kolmogorov test are shown for different number of
probe packets sent and for two different levels of significance. The
test has been performed on samples of the estimated loss proba-
bility for a certain link, taken from our simulation. We compared
the two hypotheses, H0 the samples are generated by the proposed
pdf in (10) vs the the alternative hypothesis H1. The test indicates
the null hypothesis whenever the result of the test is less than the
value given in the corresponding collumn for a given level ofsig-
nificance.

−0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

x−axis

pd
f o

f t
he

 e
st

im
at

or
 o

f l
in

k 
lo

ss
 p

ro
ba

bi
lit

y

N=15               
N=20               
p(i−1)=0.8 p(i)=0.2

Fig. 2. pdf of the estimator for different number of probe pkts.
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8. CONCLUSIONS

In this paper we have presented a method to infer the link loss rates
in a network using loss statistics gathered from nodes participat-

Table 1. Results of the Smirnov-Kolmogorov test for different
numbers of probe sent.

Number of probes sent Test’s Value � = 0:95 � = 0:99

15 0.1672 0.409 0.489
20 0.2002 0.294 0.352
100 0.2222 0.0428 0.0513
500 0.2317 0.0428 0.0513

ing in a multicast distribution tree. The assumption that the loss
behaviour of the network does not change over the probing inter-
val is central to our calculations. This assumption does not hold
in general for long time periods, thus it constitutes a limitation to
the applicability of our method. Our method is suboptimal in per-
formance, since we restrict our attention to estimates of link loss
probabilities. However as the method uses consistent estimates,
for large number of packets, the estimator variances converge to
zero. The advantage of single chain methods is linear complexity
with respect to the depth of the tree. In the future we will try to
quantify the loss in performance (determined by the Fisher Infor-
mation matrix) induced by applying our approach compared to the
approach in [3] and to the optimal multichain performance. Due to
space limitations we have not presented simulations of the multi-
chain fusion method described in Sec 6. This will be presented in
a later paper. Another point not taken into consideration is the fact
that probe packets compete with background traffic for transmis-
sion. We plan to do more extensive simulations with tools such as
ns so as to include such phenomena.
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