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ABSTRACT

In oblivious steganography, host noise suppression is a great
concern as the watermark signal energy is usually much less
than that of the host signal. In this paper, we model the
data hiding as a more general H0/H1 hypothesis testing
problem. Decision making is based on the statistical dis-
tinction between H0 and H1. A simple embedding scheme,
viz., set partitioning, is proposed. The coeÆcients are di-
vided into two sets to represent bit value 1 and 0. The av-
erage distortion introduced is calculated. Its optimum and
suboptimal detection is discussed in detail. Analysis and
simulation studies show improvement over existing schemes.

1. INTRODUCTION

Digital watermarking or data hiding is the art of hiding
information in a cover signal (image, audio, video, etc.).
The technique provides a potential solution for multimedia
copyright protection. Two requirements in watermarking
are robustness and transparency.

In oblivious applications where the original cover signal
is not available, the host noise suppression is a great con-
cern, since the energy of the host signal is much larger than
that of the watermark signal.

In Section 2, we model data hiding as a general hy-
pothesis testing problem. The decoder needs to answer the
question, Yes/No (watermark detection) or bit value 1/0
(data hiding). The two hypotheses H0 and H1 must have
di�erent statistical properties. A simple method, viz., set
partitioning is proposed.

The average distortion introduced by this scheme is cal-
culated in Section 3.

In Section 4, decoding is discussed in detail, including
hard and soft detectors. As the ML detector is quite com-
plicated and infeasible to implement, two suboptimal algo-
rithms are proposed and their PE (Probability of Error)
versus SNR performances are analyzed.

In Section 5, some experimental results are presented.
Simulation studies demonstrate improvement over existing
schemes.

Conclusions are presented in Section 6.

This work is partly supported by Panasonic Technologies, NJ

2. HYPOTHESIS TESTING AND SET

PARTITIONING

Watermarking or data hiding is, in essence, a hypothesis
testing problem. Suppose c is an original coeÆcient in some
watermark domain (could be a DCT or wavelet coeÆcient,
for instance) in which one bit is to be embedded. Let x
denote the coeÆcient after embedding. The two hypotheses
are

H0: bit value 0 embedded in x.

H1: bit value 1 embedded in x.

Obviously, H0 and H1 have di�erent statistical proper-
ties. A good watermarking algorithm should modify the
statistical property of a cover signal without much percep-
tual degradation.

Many methods, for example, Patchwork [2], Spread Spec-
trum (SS) [4] superimpose a random sequence in the origi-
nal cover signal. These methods, while successful in escrow
applications, are not very e�ective in oblivious scenarios.

In a noise free scenario, how can the decoder make a
reliable decision H1/H0 on a given x? Answer is simple
and straight forward, make H0 and H1 have no element in
common. Thus decoder can always make a correct decision.

In a noisy environment, detection is not as reliable as
in noise-free cases. To increase its robustness to noise, we
can simply keep the element in H0 and H1 some distance
apart.

This simple watermarking idea could be extended to the
following data hiding scheme, which we will discuss in detail
in this paper. Two separate sets are constructed on the real
axis (Fig. 1). The embedded coeÆcient value should be kept
in a set according to the bit value to be hidden.
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Figure 1: Set Partitioning Scheme

To embed bit value 1, the coeÆcient x should be kept in
set 1. If the original value of c is already in set 1, no mod-
i�cation is needed. Otherwise it is replaced by the nearest
element in set 1. Similarly, after embedding bit value 0, x
is kept in set 0.

To hide one bit information in a coeÆcient sequence
c, we need to de�ne a deterministic pattern to represent
bit values. For example to embed 1 bit in a 5-coeÆcient



sequence, we can de�ne two patterns

Pattern A (bit 1): fset 1, set 0, set 1, set 0, set 1g;
Pattern B (bit 0): fset 0, set 1, set 0, set 1, set 0g:
To hide a bit, the modi�ed sequence x should comply

with Pattern A (to hide bit 1) or Pattern B (to hide bit
0). For example, to hide bit value 1, x0 2 set 1, x1 2 set 0,
x2 2 set 1, x3 2 set 0 and x4 2 set 1.

We name this method set partitioning.

3. AVERAGE DISTORTION

In the following analysis, we assume c is uniformly dis-
tributed in the region (�a; a).

Denote the error introduced in embedding as e = x� c.
As depicted in Fig. 2, suppose bit value 1 is to be embedded,
consider the typical region AD.

If c is in the range AB, no modi�cation is needed, e = 0.
If c is in the range BD, e is uniformly distributed in

(�d� d1=2; d+ d1=2). The conditional probability can be
expressed as, P (c 2 ABjc 2 AD) = d1

2d1+2d
, P (c 2 BDjc 2

AD) = 2d+d1

2d1+2d
. The average distortion is

D =
(2d+ d1)

(2d1 + 2d)
� (2d+ d1)2

12
=

1

12

(2d+ d1)3

(2d+ 2d1)
: (1)

This result holds if bit value 0 is embedded instead.
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Figure 2: Average Distortion Calculation

4. DETECTION

4.1. Hard Decision Detection

Suppose one bit is embedded in an N-coeÆcient sequence
c.

The simplest detection rule is majority vote. That is
hard decision based on individual coeÆcient. Real axis is
divided into decision region 1 and 0 (Fig. 3). If received
coeÆcient r falls in Region 1, it is decided the transmitted
signal x comes from set 1. Otherwise we assume it comes
from set 0. In the example just mentioned, if a received
sequence pattern is fset 0, set 0, set 1, set 0, set 0g, which
is more similar to pattern A (2 coeÆcient di�erence) than
to Pattern B (3 coeÆcient di�erence), the decision is made
in favor of bit value 1.

Set 0 Set 1Set 1Set 0Set 1

Region 1 Region 1 Region 1

Region 0 Region 0

Detection Region for Set 1 Detection Region for Set 0

Figure 3: Hard Decision Region

4.2. Maximum Likelihood Detection in Gaussian

Noise

A better solution is Maximum Likelihood (ML) detector.
Denote x as the transmitting signal and r is the received

coeÆcient after Gaussian channel, n � N(0; �2).

The ML likelihood ratio [5] is

R =
P (x 2 set 1jr)
P (x 2 set 0jr) ; (2)

where P (yjx) is the probability of y given x.

Rewriting the above equation using di�erent variables
u and v

R =

P
u2set 1 P (ujr)P
v2set 0 P (vjr)

: (3)

where

P (ujr) = P (u)f(rju)
f(r)

: (4)

The above becomes

R =

P
u2set 1 P (u)f(rju)P
v2set 0 P (v)f(rjv)

: (5)

Gaussian noise probability density function is

f(rju) = 1p
2��

� exp(�(r� u)2

2�2
): (6)

The original coeÆcient c is uniformly distributed, its
probability density function f(x) = 1

2a
� a � x � a.

After embedding information bit value 1, the probability of
the transmitting signal P (u) is depicted in Fig. 4.

Note the probability pulses at the end points. They
happen with greater probability because any c out of the
set 1 is replaced by the end points.
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Figure 4: Calculation of ML ratio
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In the same way,
P

u2set 0 P (v)f(rjv) can be calculated
and yields a result similar to (7). However, a closed-form
result of ML ratio in (2) can not be obtained. Besides, as
noise power �2 is usually unknown at decoder, the detector
is infeasible in practice.

The challenge in the decoding is that the transmitted
signal could be any value in these two sets. The ML ra-
tio calculation thus involves all elements in set 1 and set
0. In the following suboptimal methods, we assume the
transmitted signal is discrete instead of continuous.

4.3. Suboptimal Detection 1

In this approximation, we simply assume the transmitted
signals are at the center of the continuous segments, the
signaling is a pattern like xoxo as depicted in Fig. 5 (A).
Signal points x and o occur with equal probability.



ML ratio can be expressed as:

R =
P (x 2 set 1jr)
P (x 2 set 0jr) : (8)

Still there are many x and o points to be considered.
Our simulation studies show that we can further sim-

plify it by merely considering the nearest x and o points.
Thus (8) reduces to

R =
P (rjx = x1)

P (rjx = x0)
; (9)

where x1/x0 is the nearest points x/o in set 1 and set
0.
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Figure 5: Suboptimal Detection in Set Partitioning

4.4. Suboptimal Detection 2

In Fig. 4, it is observed that the endpoints are transmitted
with higher probability. Another reasonable approximation
assumes the transmitted signals have xxoo pattern as shown
in Fig. 5 (B).

Only the nearest end points are considered as transmit-
ting signal, that yields the same results as (9).

In the case where one information bit is embedded in
an N-coeÆcient sequence, sequence detector can be con-
structed.

In the example just mentioned above, a 5-coeÆcient se-
quence r is received. The nearest x and o points to ri are
denoted as ui (in set 1) and vi (in set 0). According to
the given pattern in Section 2, two sequence candidates are
constructed,

Pattern A Type: u = fu0; v1; u2; v3; u4g:
Pattern B Type: v = fv0; u1; v2; u3; v4g:

If jjr � ujj < jjr� vjj, the received sequence is more sim-
ilar to the Pattern A, bit value 1 is decided. Otherwise, bit
value 0 is decided.

5. SIMULATION AND EXPERIMENTAL

RESULTS

To evaluate the scheme, we measure the watermark distor-
tion against extracted Probability of Error (PE) in Gaus-
sian noise environment. SNR is rede�ned as the ratio of
distortion energy S over noise power �2.

The comparison of the detection algorithms is shown in
Fig. 6. The sequence is composed of 11 coeÆcients. The ra-
tio d=d1 = 1. The result shows that Method 2 outperforms
Method 1. Further simulation shows decoding performance
in Method 2 is almost the same as ML detector. Both sub-
optimal methods far outperform the hard decision decoder.

It is observed that PE-SNR is only a�ected by the ra-
tio of d=d1. Fig. 7 is the result of embedding 1 bit in an

8-coeÆcient sequence. It shows that the smaller d=d1 per-
forms better at lower SNR. However at higher SNR, larger
d=d1 is more advantageous. Because in practice, data hid-
ing always works at lower SNR, usually SNR < 1 (water-
mark distortion is not expected to be larger than moderate
or severe compression distortion), smaller d=d1 is more suit-
able.

A very e�ective oblivious scheme, Quantization Index
Modulation (QIM) [1] [3], is just a special case of the set
partitioning scheme with d1 = 0. In that scheme, the
marked coeÆcient x is discrete instead of continuous (Fig. 8).

The set partitioning scheme o�ers us the 
exibility to
choose di�erent value of d=d1. In most applications where
SNR is low, signaling with d=d1 =1 (QIM) is not a good
choice.
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Figure 6: Detection Performance Comparison
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Figure 8: QIM Embedding

In Fig. 9, one bit is embedded in a 4-coeÆcient sequence.
Several d=d1 selections outperform QIM. The improvement
is noticeable. At higher SNR, QIM performs slightly better
than the signaling with d=d1 = 1=1, as shown in Fig. 10.
However, the latter is more promising due to the fact SNR

is mostly low in practice. In other words, the proposed set
partitioning method is more reliable in noisy scenario.

Given same distortion energy, the maximum error e in
d=d1 = 1 signaling is larger than that in QIM scheme.
Under the same maximum error constraint (which implies



less distortion energy in d=d1 = 1 signaling), the former
still demonstrates signi�cant advantage over QIM scheme
at lower SNR.

In practice, it may be desired that the set partition be
kept secret. For example, we can apply a shifted set par-
tition in Fig. 1 in embedding. The shift value is a random
variable only known at decoder. A randomly selected set
partitions are used for di�erent coeÆcients in a sequence.
That can enhance its security.
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Figure 9: PE-SNR at Lower SNR
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Figure 10: PE-SNR at Higher SNR

This scheme can be employed instead of SS modulation.
It could be used in various watermark domains. In our im-
age data hiding experiments, information bits are embed-
ded in the DFT amplitude domain. A pattern is embedded
in the medium frequency coeÆcients. In our experiment,
64 bits are embedded in a 256x256 images. Fig. 11 and
Fig. 12 show the original and marked images. Experiments
demonstrates its robustness against common compression
and �ltering attacks. More precise artifacts control and
higher hiding capacity are under further investigation.

6. CONCLUSIONS

In this paper, a new oblivious data hiding scheme is pro-
posed. It is based on hypothesis testing. Its goal is not to
\modulate" a signal, but to change the statistical proper-
ties. The ML detection is analyzed and two very e�ective
suboptimal detection methods are discussed and compared.
Simulation studies shows it is a promising steganographic
scheme.
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Figure 11: Original Lenna Image

Figure 12: Marked Lenna Image


