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ABSTRACT

Many communicationssystemsemploy training, i.e., the
transmissiorof known signals,sothatthe channelparame-
tersmay be learnedat the recever. This hasa dual effect:
toolittle trainingandthe channels improperlylearnedtoo
much training and thereis no time left for datatransmis-
sion beforethe channelchanges.In this paperwe usean
information-theoreti@pproacho find the optimal amount
of training for frequeng selectve channelsdescribedby a
block-fadingmodel. Whenthetraininganddatapowersare
allowedto vary, we show thatthe optimalnumberof train-
ing symbolsis equalto the length of the channelimpulse
response.When the training and datapowers are instead
requiredto be equal,the optimal numberof symbolsmay
belarger. We furthershow thatat high SNRtraining-based
schemesre capableof capturingmostof the channelca-
pacity, whereasatlow SNRthey arehighly suboptimal.

1. INTRODUCTION

Frequenyg selectve fadingmultipathchannelsareoftenen-

counteredn wirelesscommunicatiorsystemgsee[1] and

thereferencesherein).To combatintersymbolinterference
(ISI) on suchchannelsreceversusevariousequalization
techniques. Most practical communicationsystemslearn

the channelimpulseresponseby meansof training—they

devote a portion of the transmissiortime to training sym-

bols known to the recever. Basedon its received signals
andthe known training data, the recever can estimatethe

channeparameters.

In this paperwe take aninformation-theoreti@pproach
for finding theoptimalparametersf atraining-basedrans-
missionschemeln particular we find alowerboundonthe
capacityof training-basedschemesassuminga frequeny
selectve channelwith block fading. The optimal training
parametersre obtainedvia maximizingthis lower bound.
Whenthetraininganddatapowersareallowedto vary, we
find the optimalpower allocationandshaw thatthe optimal
lengthof the training intenval is equalto the length of the
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channel Ourresultsfurthershow thatathigh SNRtraining-
basedschemeganachiese (mostof the) capacity whereas
atlow SNRthey arehighly suboptimal.

2. CHANNEL MODEL

We assumeablock-fadingfrequeng-selectvechannemodel,
wherethe channelcoeficients are constantfor somedis-
creteinterval T', referredto asthe coherence interval, after
whichthey changeo independentaluesheldfor anothefT
channelusesandsoon. Theblock-fadingmodelis apiece-
wise constan@pproximatiorof atime varyingchannel.

We further assumethat the distribution of the coefi-
cientsof the channelresponséas known to both the trans-
mitter andrecever. To obtaintherealizationof the channel
attherecever, partof eachcoherencénterval is devotedto
transmittingknown trainingsymbols.Hencetraining-based
schemegomprisethefollowing two phases:

1. Training Phase
During thetraining phasewe modelthe transmission
as

Yy, =0:0:h+ v, (1)

whereh € CE*1 is the vectorof the channelcoefi-

cients,v, € CT~*! is avectorof independenaddi-
tive Gaussiamoise,anda? is the expectedtransmit
power duringthetraining phase [In our schemethe
transmitpowersduringthetraininganddatatransmis-
sionphasesnaydiffer.] For simplicity of the presen-
tation, we shallassumeRy, = Ehh* = I. Further

0, € CT-*I' is amatrix madeup of trainingsymbols

known to therecever,
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Sinceo? is the expectedtransmitpower, the train-
ing symbolsvectorf, = [6; 6, ... 6r.]" satisfies
tr 6,6 = T.. An estimateof the channelis formed
from theobsenedsignalsy ., and®,

fl = f(Y'm@'r)'

Forawell-determinedystenof equationgandmean-
ingful estimatewe needT; > L, thatis, at leastas
mary equationsasunknowvnsin (1).

2. Data Transmission Phase
For this phasewe have

Ya = UdeSd + UTHTaT + vg4, ESdSZ = RS7

wheresy =[s; s» ... st,]" isthevectorof thetrans-
mitted datasequenceandvy € C(Ta+tl-1)x1 s the
vectorof additive white complex Gaussiamoisewith
covariance Evyv) = I. Furthermorethe matrices
Hy € CTatl-1)XTs gnd . € C(Ta+L-1)xT- gre

definedas
b -
ha My
hr hrp_1 ... h1
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hy, hp—1 ... b
hy hp
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hr ... hs
H, = :
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Theexpectedransmissiorpoweris o3. Theestimate
of thechannelh, is usedto detects; from

ya—o-H 0, = Udﬁdsd+gdﬂdsd +o0.H:0, + Vd,
Ya Va
(2)
wherev, is the effective noisecomprisedof the ad-
ditive noiseandresidualchannekstimatiorerror, and
y.; denoteshecombinatiorof themeasure@ndknown

signalsduringthe datatransmissiorphase.

We notethatthefollowing relationshold dueto conser
vationof time andeneny,

T=T,+T;, o’T= 0'72_T-,- + J%Td.

Clearly, increasingT’, improvesthe channelestimatebut

that is achiesed at the expenseof the length of the data
transmissiorinterval T,. Similartrade-of holdsfor #2 and
o2. We areinterestedn finding optimal (from the capacity
point of view) parameters7,,T,,02,03%) alongwith the
optimaltraining sequencd,. We shouldalsomentionthat
thechannekstimateh may, for instancepethe maximum-
likelihood or linear minimum-mean-square-emestimate.
Note that MMSE estimateh is the conditionalmeanof h

givend, andy . Henceh andh areuncorrelatecindsoare
H and H. Thus,whenthe channelestimateis MMSE, the
effective noisev); in (2) is uncorrelatedvith thesignalsg.

3. CAPACITY BOUNDSAND OPTIMAL
PARAMETERS OF THE TRAINING-BASED
TRANSMISSION SCHEME

The capacityin bits per channelusein the training-based
schemecanbeexpressedis

1
C.,. = sup TI(YTaerayd;Sd)
Ps g strEsasy<Tq

sup %(I(YdasdlyTaeT) +I(yT50T;Sd))
Psy ,trEsdsngd \—26—/
thatis, thecapacityin atraining-basedchemas thesupre-
mumof themutualinformationbetweerthetransmittecand
receved signalsduring the datatransmissiorphase given
thetransmittedandrecevedsignalsduringthetrainingphase.
In general finding this capacityis a hard problem. There-
fore, we find alower boundon the capacityfor a particular
choiceof thechannelestimate From (2),

vl = 0aHsq + V. 3

We assumehat H in (3) is obtainedfrom the mean-square
error(MMSE) estimateof the channelh. Thechoiceof the
estimatoiis drivenby its propertythattheadditive noiseand
signalin (3) arethenuncorrelatedthus, v/, in (3) is addi-
tive noiseuncorrelatedvith s,. The;raining—base(.tcheme
assumeghat the channelestimateh (and, consecutely,
H in (3)) is correct,an assumptioroften madein practi-
cal transmissiorschemes.Hence,the channelcapacityof
the training-basedschemes as sameas the capacityof a
known channelsystem,subjectto the additive noise with
the covariancematrix Ry =

Ev,v, = E [agﬁdsds;ﬁf; + aiﬁf,a,o:_ﬁ:] +1. (4)
Choosingthe signal covarianceRs = I leadsto a lower
boundonC, =

T-T,

E— 1T (I 2R-1H H)
Rs’gllag::Td T+ ogdet (I +o3R, " HjRsHy

T_T o
) o | (I 2 —1H*H)
> T+L_10gdet +o;R, T HyH,



Definethenormalizedchannel H,, as
trE(H; Hq)
Thenwe canwrite capacityboundas

L 2

T — Zi: ry
C.>E log det (I-i—ad%

T —1 77 f1*
T+L-1 Rv;Hde)
We areinterestedn finding parametersf the transmission
schemehat maximizethe capacitylower boundin (5). In
particular we maximizethe lower boundon capacityin (5)
with respecto thetrainingdatasequencé,., trainingpower
o2, andlengthof thetraininginterval 7. Theresultis given
belon andthe proofis omittedfor brevity.

Theorem 1 (Optimizing the training-based scheme) The
optimal length of the training interval for the training-based
transmission scheme over a frequency-selective channel is
equal to the length of the channel, T, = L, and the lower
bound on the capacity is given by

> - - *
Cr > T+ Lo 1Elogdet(IijeﬂHH ),
where
%’_QTL(\/V; VY- )2 forT>2L
Pai = 4L((ai+7:7)2T) for T = 2L
s (V=7 — /=y +1)? forT <2L
— 0—2
and = L
The optimal power allocation is given by
(v = V(= 1)o? 7Ly forT>2L
o5 = lo? Lo for T =2L |,

forT < 2L

(4 VAT = D)o’
2 2

o7 =0g+ (0" 0y

I

For highandlow SNRtheresultsof Theoreml special-
ize asfollows.

Corollary 1 (High and low SNR)
1. At high SNR, lower bound on capacity is given by

T-L o’T _
C; >E710 det([+—————HyzH)),
while the optimal power allocation is
2 VT1a o2 T

74T T+ VI

2. At low SNR, lower bound on capacity is given by

T — (02T)2 _
> Eil I H,H}
Cr > B logdet(I + g HuHl}),
while the optimal power allocation is given by

1 ., T
(7(2125‘0'2E.

()

SomecommentsegardingTheoreml are appropriate.
Intuitively, longertrainingintervalsprovide betterestimates
of the channel,thus decreasinghe power of the effective
noise.However, longertrainingintervalsmeanlesstime for
datatransmission.Theorem 1 implies that spendingtime
sendingdatais moreimportantthanspendingime training;
the optimumtraining interval is setto its minimum mean-
ingful length. Note thatincreasingthe traininginterval in-
creaseshecapacitylogarithmically(in lower noisepower),
but decreases linearly (in time).

3.1. Equal powers

Theassumptioimadethroughouthe paperis thatthe com-

municationsystemcan provide two differenttransmission
power levels,onefor thetrainingandonefor the datatrans-
mission phase. However, if practical constraintsimpose
equalpower, i.e.,o2 = o3 = o2, the capacitylower bound

canbewrittenas

T-
T+ L—l

lo det( o'Ty
& 1+02(T, + L)

Furthersimplificationsof this capacitylower boundexpres-
sionsarepossiblefor thespecialkcase®f highandlow SNR.

C,>E Hde)

1. At high SNR,we canwrite the capacitylower bound
as

T-T- T _ _
>F———1 T_H.H:) .
¢ T+L—1°gdet< T.+L ° d)
(6)
Optimum length of the training interval can be ob-
tainedby evaluating(6) for variousT,, L < T, < T.

2. At low SNR,usinglog(I + A) =loge(A — A%2/2 +

A3/3...), we obtainfollowing expressiorfor theca-
pacitylowerbound
-T;
> 4 _
C, > o"Llog(e )T+L—1T (T —T,).

Upontakingthederivativewith respecto T, onecan
notice that the capacityboundis maximizedfor T
foundasa solutionof the quadraticequation
4 1
T? - _TT,+ -T* = 0.
T3 * 3

Solvingfor T'., wefind thatT, = %T, andathird of
a coherencénterval shouldbe devotedto training.



4. SSIMULATION RESULTSAND CONCLUSION

Figure 1 shows the training-basedower boundson capac-
ity asa function of the block lengthT for o2 = 6dB and
the channellength L = 4. By allowing the training and
datatransmissiompowersto vary, we achieze approximately
5 — 10% increasdn capacity At T' = 50, achiesed capac-
ity is approximately20% below the (unrealistic)capacity
achievedwhenthereceverknowsthe channeperfectly

In Figure 2, the optimal transmitpower allocation o
ando? is plotted as a function of the block length. The
dashedine in Figure 2 denoteshe caseof equaltraining
anddatatransmissiorpowerso? = o2. Figure2 illustrates
whatis implied by Theoreml — we needto spendmore
power for training than for transmissiorwhenT > 2L,
more power for transmissiorthanfor training whenT <
2L, andthe samepower for bothwhenT = 2L.
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Now that we have determinedthe optimal amountof

training for ary training-basedommunicatiorsystem,the
questiorthatremainss how good are training-based schemes?
To answetthis questiononewould needto computetheac-
tual capacityof a block-fadingfrequeng-selectve channel
andto compareit with the training-basedcapacitylower
boundswe obtained.Unfortunately computingthis capac-
ity, in the generalcase,is an openproblem. However, we
have thefollowing resultwhoseproof we omit for brevity.

Theorem 2 Athigh SNR (o — o0), the capacity of a block-
fading frequency-selective channel with coherence interval
T isgiven by

C = (T — L)logo® + O(1). 7)
Alternatively, at low SNR (o — 0), we have
C = 0(d?). (8)
i i i — a3T
Now studyingTheoreml athigh SNRyieldsp,; = T VI?

Thus,sinceH H* is genericallynonsingular:
T-L 2T _
—_— 7 HH*)

T+L-1 (VT =L+ VL)?

T-L T -
————Flogdet H*
T+L-1 % ((w/T—L-i-\/f)? )

T-L 9

= m log detr IT+L—1 + 0(1)
= (T - L)logo® +0(1).
In otherwords,training-basegchemeschiese capacityat
high SNR!
At low SNR,ontheotherhand examinationof Theorem
1yields

c,

vV

FElog det (I +

T

Cr > 0(a"), C)
and,in fact,this boundis tight at low SNR becausé¢he ad-
ditive noisev); is almostGaussianComparingthis to The-
orem2 shaws that training-basedchemesre highly sub-
optimalatlow SNR.
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