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ABSTRACT

Many communicationssystemsemploy training, i.e., the
transmissionof known signals,sothatthechannelparame-
tersmaybe learnedat the receiver. This hasa dualeffect:
too little trainingandthechannelis improperlylearned,too
much training and thereis no time left for datatransmis-
sion beforethe channelchanges.In this paperwe usean
information-theoreticapproachto find the optimal amount
of training for frequency selective channelsdescribedby a
block-fadingmodel.Whenthetraininganddatapowersare
allowedto vary, we show that theoptimalnumberof train-
ing symbolsis equalto the lengthof the channelimpulse
response.When the training and datapowersare instead
requiredto be equal,the optimal numberof symbolsmay
belarger. We furthershow thatat high SNRtraining-based
schemesarecapableof capturingmostof the channelca-
pacity, whereasat low SNRthey arehighly suboptimal.

1. INTRODUCTION

Frequency selective fadingmultipathchannelsareoftenen-
counteredin wirelesscommunicationsystems(see[1] and
thereferencestherein).To combatintersymbolinterference
(ISI) on suchchannels,receiversusevariousequalization
techniques. Most practicalcommunicationsystemslearn
the channelimpulseresponseby meansof training—they
devote a portion of the transmissiontime to training sym-
bols known to the receiver. Basedon its received signals
andthe known training data,the receiver canestimatethe
channelparameters.

In thispaper, wetakeaninformation-theoreticapproach
for findingtheoptimalparametersof a training-basedtrans-
missionscheme.In particular, wefind a lowerboundonthe
capacityof training-basedschemesassuminga frequency
selective channelwith block fading. The optimal training
parametersareobtainedvia maximizingthis lower bound.
Whenthetraininganddatapowersareallowedto vary, we
find theoptimalpowerallocationandshow thattheoptimal
lengthof the training interval is equalto the lengthof the
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channel.Ourresultsfurthershow thatathighSNRtraining-
basedschemescanachieve (mostof the)capacity, whereas
at low SNRthey arehighly suboptimal.

2. CHANNEL MODEL

Weassumeablock-fadingfrequency-selectivechannelmodel,
wherethe channelcoefficients are constantfor somedis-
creteinterval � , referredto asthecoherence interval, after
whichthey changeto independentvaluesheldfor another�
channeluses,andsoon. Theblock-fadingmodelis apiece-
wiseconstantapproximationof a time varyingchannel.

We further assumethat the distribution of the coeffi-
cientsof the channelresponseis known to both the trans-
mitter andreceiver. To obtaintherealizationof thechannel
at thereceiver, partof eachcoherenceinterval is devotedto
transmittingknown trainingsymbols.Hencetraining-based
schemescomprisethefollowing two phases:

1. Training Phase
During thetrainingphasewe modelthetransmission
as �����	� ��
���
�������� (1)

where 
���������� is thevectorof the channelcoeffi-
cients, � � �����! ��� is a vectorof independentaddi-
tive Gaussiannoise,and �#"� is the expectedtransmit
power duringthetrainingphase.[In our scheme,the
transmitpowersduringthetraininganddatatransmis-
sionphasesmaydiffer.] For simplicity of thepresen-
tation, we shall assume$�% �'&�()()*+�', . Further,
��-��� �  ��� is amatrixmadeupof trainingsymbols
known to thereceiver,
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Since �#"� is the expectedtransmitpower, the train-
ing symbolsvector

1 � �?> 1 � 1 " 34353 1 �  �@ � satisfies
tr
1 � 1 *�A� � � . An estimateof thechannelis formed

from theobservedsignals,� � , and 
 � ,B
 �DCFEG� � �H
 �JI 3
Forawell-determinedsystemof equations(andmean-
ingful estimate)we need� �AKML , that is, at leastas
many equationsasunknownsin (1).

2. Data Transmission Phase
For this phasewehave�ONP�	�)NRQSNRT!N � � � Q � 1 � ��� N � ET!N5T *N � $PU �
whereT!NP�V> W � W " 34343 W �YX @ � is thevectorof thetrans-
mitteddatasequence,and � N ���FZ �![ 9O�87#�]\^�_� is the
vectorof additivewhitecomplex Gaussiannoisewith
covariance E� N � *N �`, . Furthermore,the matricesQaN �b�FZ �YX 9��87��c\d� �YX and Q � ����Z �!X 9��#7#�]\^� �! are
definedas
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Theexpectedtransmissionpower is �#"N . Theestimate
of thechannel,

B
 , is usedto detectT!N from�ONhgi� � BQ � 1 �j kml noqpX �b��N BQaN5T!N � ��N�rQaN4T!N � � � rQ � 1 � �s� Nj ktl nuJpX �
(2)

where �OvN is the effective noisecomprisedof the ad-
ditivenoiseandresidualchannelestimationerror, and� vN denotesthecombinationof themeasuredandknown
signalsduringthedatatransmissionphase.

We notethatthefollowing relationsholddueto conser-
vationof time andenergy,� � � � � � N � � " � �w� "� � � � � "N � N 3

Clearly, increasing� � improves the channelestimatebut
that is achieved at the expenseof the length of the data
transmissioninterval � N . Similar trade-off holdsfor �#"� and�#"N . We areinterestedin finding optimal(from thecapacity
point of view) parametersE � �_� � N � � "� � � "N I along with the
optimal trainingsequence

1 � . We shouldalsomentionthat
thechannelestimate

B
 may, for instance,bethemaximum-
likelihoodor linear minimum-mean-square-error estimate.
Note that MMSE estimate

B
 is the conditionalmeanof 

given

1 � and � � . Hence
B
 and r
 areuncorrelatedandsoareBQ and rQ . Thus,whenthechannelestimateis MMSE, the

effectivenoise��vN in (2) is uncorrelatedwith thesignal T!N .
3. CAPACITY BOUNDS AND OPTIMAL

PARAMETERS OF THE TRAINING-BASED
TRANSMISSION SCHEME

The capacityin bits per channelusein the training-based
schemecanbeexpressedasx � � y^z�{|5} XJ~ �G�^� U X U^�X5� �YX��� ,)EG� �_� 1 ��� � NJ� T N I� y^z�{|5} XJ~ �G�^� U X U^�X � �YX��� E�,�E�� N � T Nq� � ��� 1 � I � ,)EG� �_� 1 � � T N Ij kml n�#� I
thatis, thecapacityin a training-basedschemeis thesupre-
mumof themutualinformationbetweenthetransmittedand
received signalsduring the datatransmissionphase,given
thetransmittedandreceivedsignalsduringthetrainingphase.
In general,finding this capacityis a hardproblem. There-
fore, we find a lower boundon thecapacityfor a particular
choiceof thechannelestimate.From(2),� vN �b��N BQaN5TRN �s� vN 3 (3)

We assumethat
BQ in (3) is obtainedfrom themean-square

error(MMSE) estimateof thechannel
 . Thechoiceof the
estimatoris drivenby its propertythattheadditivenoiseand
signal in (3) arethenuncorrelated;thus, �OvN in (3) is addi-
tive noiseuncorrelatedwith T N . Thetraining-basedscheme
assumesthat the channelestimate

B
 (and, consecutively,BQ in (3)) is correct,an assumptionoften madein practi-
cal transmissionschemes.Hence,the channelcapacityof
the training-basedschemeis assameas the capacityof a
known channelsystem,subjectto the additive noisewith
thecovariancematrix $ u pX �

E� vN � vN * � E � � "N rQaNRTRN5T *N rQ *N � � "� rQ � 1 � 1 *� rQ *��� � , 3 (4)

Choosingthe signal covariance $PU ��, leadsto a lower
boundon

x � ��a�Y��#� ~ �G� �#� � �YX & � g � �� � L g � ���J�����t��� , � � "N $ 7��u BQ *N $ U BQ N5�K & � g � �� � L g � ���J� �¡�t��� , � � "N $ 7#�u BQ *N BQ N5�



Definethenormalizedchannel, ¢QaN , as¢QaNP�¤£ L � N
trE E BQ *N BQaN I BQaN 3

Thenwe canwrite capacityboundasx �SK & � g � �� � L g � ���J�����t�S¥¦ , � � "N�§
�¨ � � �#" ©ªR«L $ 7#�uJpX ¢QaN ¢Q *N�¬­ (5)

We areinterestedin finding parametersof thetransmission
schemethatmaximizethe capacitylower boundin (5). In
particular, we maximizethelower boundon capacityin (5)
with respectto thetrainingdatasequence

1 � , trainingpower�#"N , andlengthof thetraininginterval � � . Theresultis given
below andtheproof is omittedfor brevity.

Theorem 1 (Optimizing the training-based scheme) The
optimal length of the training interval for the training-based
transmission scheme over a frequency-selective channel is
equal to the length of the channel, � � � L

, and the lower
bound on the capacity is given byx �SK � g L� � L g � & �®�q���¡�t� E�, �s¯ eff ¢Q ¢Q * I �
where¯

eff
�±°²³ ²´

µY¶ �� 7 " � E¸· ¹ºg · ¹+g � I " for �D»	¼ LZ µY¶ � \ ¶½ �8Z¾�]9 µ ¶ � \ for � � ¼ LµY¶ �" �#7 � E · g�¹ºg · g�¹ � � I " for �D¿	¼ L
and ¹À� Z � 78��\¸Z¾�]9 µY¶ � \µ ¶ � Z � 7 " ��\ .
The optimal power allocation is given by� "N �Á°²³ ²´

EÂ¹ºgÄÃ ¹ÅEÂ¹+g � I]I �#" �� 7)� for ��»	¼ L�" �#" �� 7)� for � � ¼ LEÂ¹ � Ã ¹ÅEÂ¹+g � I]I �#" �� 7)� for ��¿	¼ L �
� "� �w� "N � E�� " gÆ� "N I � L 3

For highandlow SNRtheresultsof Theorem1 special-
ize asfollows.

Corollary 1 (High and low SNR)

1. At high SNR, lower bound on capacity is given byx �ÇK & � g L� � L g � �®�q���¡�4� E�, �
�#" �E · � N � · L I " ¢QaN ¢Q *N I �

while the optimal power allocation is� "N � · � N· � N � · L�È � " �� N 3

2. At low SNR, lower bound on capacity is given byx � K & � g L� � L g � ���J� �¡�t� E�, �
E��#" � I "É � N ¢Q N ¢Q *N I �

while the optimal power allocation is given by� "N � �¼ È � " �� N 3
SomecommentsregardingTheorem1 areappropriate.

Intuitively, longertrainingintervalsprovidebetterestimates
of the channel,thusdecreasingthe power of the effective
noise.However, longertrainingintervalsmeanlesstimefor
datatransmission.Theorem 1 implies that spendingtime
sendingdatais moreimportantthanspendingtime training;
the optimumtraining interval is setto its minimum mean-
ingful length. Note that increasingthe training interval in-
creasesthecapacitylogarithmically(in lowernoisepower),
but decreasesit linearly (in time).

3.1. Equal powers

Theassumptionmadethroughoutthepaperis thatthecom-
municationsystemcanprovide two different transmission
power levels,onefor thetrainingandonefor thedatatrans-
mission phase. However, if practical constraintsimpose
equalpower, i.e., �#"�a���#"N ���#" , thecapacitylower bound
canbewrittenasx �SK & � g � �� � L g � �®�q���¡�t��Ê , �

� ½ � �� � � " E � �e� L I ¢QaN ¢Q *N�Ë 3Furthersimplificationsof thiscapacitylowerboundexpres-
sionsarepossiblefor thespecialcasesof highandlow SNR.

1. At high SNR,we canwrite thecapacitylower bound
asx � K & � g � �� � L g � ���J���¡�4� Ê , �

�#" � �� � � L ¢Q N ¢Q *N Ë 3
(6)

Optimum length of the training interval can be ob-
tainedby evaluating(6) for various� � , LÄÌ � � ¿Í� .

2. At low SNR,using
���J� E�, ��Î I � ���J��Ï E Î g Î "!Ð ¼ �Î 6 Ð�Ñ 34353 I , weobtainfollowing expressionfor theca-

pacitylowerboundx � K � ½ L ���J� E Ï I � g � �� � L g � � � E � g � � I 3Upontakingthederivativewith respectto � � , onecan
notice that the capacityboundis maximizedfor � �
foundasa solutionof thequadraticequation� "��g ÉÑ �h� ��� �Ñ � " � 2�3
Solvingfor � � , we find that � � � �6 � , anda third of
a coherenceinterval shouldbedevotedto training.



4. SIMULATION RESULTS AND CONCLUSION

Figure1 shows the training-basedlower boundson capac-
ity asa function of the block length � for �#"+�ÓÒJÔ�Õ and
the channellength L � É

. By allowing the training and
datatransmissionpowersto vary, weachieveapproximatelyÖ g � 2�× increasein capacity. At � � Ö 2 , achievedcapac-
ity is approximately¼ 2�× below the (unrealistic)capacity
achievedwhenthereceiverknowsthechannelperfectly.

In Figure 2, the optimal transmitpower allocation �#"N
and � "� is plotted as a function of the block length. The
dashedline in Figure2 denotesthe caseof equaltraining
anddatatransmissionpowers �#"N �Ø�#"� . Figure2 illustrates
what is implied by Theorem1 — we needto spendmore
power for training than for transmissionwhen �Ù»?¼ L ,
morepower for transmissionthan for training when ��¿¼ L , andthesamepower for bothwhen � � ¼ L .
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Fig. 1. Training-basedlowercapacitybound
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Fig. 2. Optimalpowerallocation

Now that we have determinedthe optimal amountof

training for any training-basedcommunicationsystem,the
questionthatremainsis how good are training-based schemes?
To answerthis questiononewould needto computetheac-
tual capacityof a block-fadingfrequency-selectivechannel
and to compareit with the training-basedcapacitylower
boundswe obtained.Unfortunately, computingthis capac-
ity, in the generalcase,is an openproblem. However, we
have thefollowing resultwhoseproofwe omit for brevity.

Theorem 2 At high SNR E��AÚÜÛ I , the capacity of a block-
fading frequency-selective channel with coherence interval� is given by x �¤E � g L I ���J� � " ��Ý E � I 3 (7)

Alternatively, at low SNR E��ÀÚ 2 I , we havex � Ý E�� " I 3 (8)

Now studyingTheorem1athighSNRyields ¯ eff
� µY¶ �Z¾Þ � 78�¡9 Þ �¡\ ¶ .

Thus,since ¢Q ¢Qß* is genericallynonsingular:x � K � g L� � L g � & �®�q� det
Ê , � �#" �E · � g L � · L�I " ¢Q ¢Q * ËK � g L� � L g � & �®�q� det
Ê �#" �E · � g L � · L I " ¢Q ¢Q * Ë� � g L� � L g � ���J� det� " , � 9��#7#� �ÍÝ E � I� E � g LàI �®�q� � " �ÍÝ E � I 3In otherwords,training-basedschemesachieve capacityat

high SNR!
At low SNR,ontheotherhand,examinationof Theorem

1 yields x �SK Ý E�� ½ I � (9)

and,in fact,this boundis tight at low SNRbecausethead-
ditive noise �OvN is almostGaussian.Comparingthis to The-
orem2 shows that training-basedschemesarehighly sub-
optimalat low SNR.
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