
LOCAL BANDWIDTH CONSTRAINED FAST INVERSE MOTION
COMPENSATION FOR DCT-DOMAIN VIDEO TRANSCODING

Shizhong Liu and Alan C. Bovik

Laboratory for Image and Video Engineering, Dept. of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX 78712-1084, USA.

Email: {sliu2, bovik}@ece.utexas.edu

ABSTRACT

 DCT-based digital video coding standards such as MPEG and
H.26x are becoming more widely adopted for multimedia appli-
cations. Since the standards differ in their format and syntax,
video transcoding, where a pre-coded video bit-stream is con-
verted from one format to another format, is of interest for pur-
poses such as channel bandwidth adaptation and video compo-
sition. DCT-domain video transcoding is generally more effi-
cient than spatial domain transcoding. However, since the data
is organized block by block in the DCT-domain, inverse motion
compensation becomes the bottleneck for DCT-domain meth-
ods. In this paper, we propose a novel local bandwidth con-
strained fast inverse motion compensation algorithm operating
in the DCT-domain. Relative to Chang’s algorithm [1], the pro-
posed algorithm achieves computational improvement of 25% to
55% without visual degradation. A by-product of the proposed
algorithm is a reduction of blocking artifacts in very low bit-rate
compressed video sequences.

1. INTRODUCTION

Digital video data are becoming widely available as MPEG or
H.26x bit-streams. In video communication systems, video
transcoding is the key technology to continuously adapt the
output channel bandwidth or to convert the video from one for-
mat to another format. DCT-domain video transcoding is gener-
ally more efficient than spatial domain transcoding because it
eliminates the need for complete decompression and compres-
sion and subsequent degradation in video quality, etc. [1-4].
However, since data is organized block by block in the DCT-
domain, inverse motion compensation becomes the bottleneck
for DCT-domain methods [1-4].

The problem of DCT-domain inverse motion compensation
was studied by Chang and Messerschmitt [1]. The general setup
is shown in Fig. 1, wherex̂ is the current block of interest, x1, x2,
x3 and x4 are the reference blocks from which x̂ is derived.
According to [1],x̂ can be expressed as a superposition of the
appropriate windowed and shifted versions of x1, x2, x3 and x4,
i.e.,

 This research was supported in part by Texas Instruments, Inc.
and by Texas Advanced Technology Program.

Fig. 1. DCT-domain inverse motion compensation.

where qij, i = 1,…,4, j = 1, 2 are sparse 8×8 matrices of zeros
and ones that perform windowing and shifting operations. For
example, for i = 1,







=

00

0
11

hI
q ,







=

0

00
12

wI
q

where Ih and Iw are identity matrices of dimension h×h and w×w,
respectively. h and w are determined by the motion vector of
x̂ . By using the linear, distributive and unitary properties of
DCT, we can obtain the following relation in the DCT-domain:

2

4

1
1

ˆ
ii

i
i QXQX ∑

=
= (2)

 where X̂ , {Xi } and Qij are the DCT’s of x̂ , {xi } and qij ,
respectively.

 In [3], Merhav et al.proposed a fast algorithm to compute (2)
by factorizing the fixed matrices Qij into a series of relatively
sparse matrices instead of fully pre-computing them. As a result,
some of the matrix multiplications can be avoided by using
simple addition and permutation operations. Assuncao et al. [4]
approximate the elements of Qij to binary numbers with a
maximum distortion of 1/32 so that all multiplications can be
implemented by shifts and additions. They showed that in terms
of operations (shift, add) required, their algorithm has only

%28 of the computational complexity of the method proposed
by Merhav et al. [3]. While all the methods above adopt 2-D
implementation scheme, Acharya et al. [2] adopts another im-
plementation scheme, where the problem is decomposed into
two separate 1-D problems. They have shown that this decom-
position is more efficient than computing the combined opera-
tion. Also, any fast algorithm can be easily applied to this sepa-
rable processing structure. Therefore, we focus on this imple-
mentation in our work.

In this paper, we propose a novel algorithm for inverse mo-
tion compensation in the DCT-domain. By modeling a natural

x2

 x3 x4

h x̂
x1 w

Intra-coded frame Inter-coded frame

e

∑
=

=
4

1
21ˆ

i
iii qxqx (1)

image as a 2-D separable Markov Random Field, we estimate
the local bandwidth of the block to be reconstructed from the
reference blocks. The algorithm can reduce the processing time
by avoiding the computations of those DCT-coefficients outside
the estimated local bandwidth. Relative to Chang’s algorithm
[1], the proposed algorithm achieves computational improve-
ment of 25% to 55% without visual degradation. Another ad-
vantage of the algorithm is that it can work on top of the fast
algorithms proposed in [3, 4] to gain more computational sav-
ings. A by-product of the proposed algorithm is a reduction of
blocking artifacts in very low bit-rate compressed video se-
quences.

2. LOCAL BANDWIDTH CONSTRAINED INVERSE
MOTION COMPENSATION

2.1. The Basic Idea

 As discussed in the last section, all proposed algorithms are
based on two operations, i.e., windowing and shifting. The win-
dowing operation keeps the data inside the window unchanged
but zeros all data outside the window. As a result, it usually
introduces a steep change at the edge of the window, which
means that many high frequencies are possibly introduced by
the algorithm. To clarify, let us study the 1-D case. Fig. 2 shows
a low bandwidth signal y(n) obtained by summing two func-
tions: y(n) = yl(n) + yr(n).

Let wl(n), wr(n) be two window functions:



 ≤≤

=
otherwise

Mn
nwl ,0

0,1
)(,



 <<

=
otherwise

NnM
nwr ,0

,1
)(.

We can write yl(n) = y(n)wl(n) and yr(n) = y(n)wr(n). Let Y(ejω),
Yl(e

jω), Yr(e
jω), Wl(e

jω) and Wr(e
jω) be the Fourier Transforms of

y(n), yl(n), yr(n), wl(n) and wr(n), respectively. Then the follow-
ing equations can be obtained:

)()()(ωωω j
l

jj
l eWeYeY ⊗= (3)

)()()(ωωω j
r

jj
r eWeYeY ⊗= (4)

where ⊗ denotes convolution of two periodic functions with the
limits of integration extending over only one period. Let B, Bl,
Br, B

l
w and Br

w be the bandwidths of y(n), yl(n), yr(n), wl(n) and
wr(n) respectively. From (3) and (4), we obtain the following
inequalities:

),max(l
wl BBB ≥ (5)

),max(r
wr BBB ≥ . (6)

Let El be frequency components beyond B in Bl, and Er be the
frequency components beyond B in Br. Since y(n) = yl(n) +
yr(n), the following equation must be satisfied:

0=+ rl EE . (7)

This means that all frequency components beyond B will disap-
pear after summation, implying that there is no need to compute
them. So if we can estimate the frequency bandwidth B before
constructing Y(ejω), we need only compute those frequency
components inside B when calculating Yl(e

jω) and Yr(e
jω). This is

the basic idea of our algorithm described below.

2.2. Local Bandwidth Constrained Inverse Motion Com-
pensation

Generally, neighboring pixels are highly correlated in images.
This inter-pixel correlation is often modeled using Markov Ran-
dom Field (MRF) models [5]. Sikora and Li [6] also assume that
the 2-D image random field is separable with identical and sta-
tionary correlation along each image dimension and that the
simple first order AR(1) Markov model is adopted to model the
pixel-to-pixel correlation along image rows and columns. For
each image row, the variance-normalized AR(1) 1-D auto-
correlation function can be expressed as Rx =α|n| where n de-
scribes the distance between two image pixels and α denotes the
pixel-to-pixel correlation in the row. α typically takes values
between 0.9 to 0.98 [6]. Fig. 3 shows two 1-D eight point adja-
cent blocks L1 and L2 in an image row.

 According to the above model, L1 and L2 should have the
same power spectral density function, hence the same band-
width because they have the same correlation function Rx =α|n|

[6]. Similarly, if we want to extract L3 (shown in Fig. 3) from L1

and L2, we can predict that L3 also has the same bandwidth as L1

and L2 based on the model. However, images are usually non-
stationary, so the bandwidth of L1 is often different from that of
L2. To account for this, we take the maximum bandwidth as the
estimate for L3, i.e.,

),max(213 BBB = (8)

where B1, B2 and B3 are the bandwidth of L1, L2 and L3, respec-
tively. For example, if the maximum index of the non-zero DCT
coefficients (here we use DCT coefficients as the representa-
tions of frequency components) is 2 in L1 and 4 in L2, we esti-
mate that the maximum index of the non-zero DCT coefficients
in L3 is 4. To extract the DCT coefficients directly from the
DCT’s of L1 and L2, we only need to compute those DCT coef-
ficients with index no greater than 4 in L3. Since we use separa-
ble implementation scheme proposed in [2], the 2-D problem
can be converted into two 1-D problems.

3. RESULTS AND DISCUSSIONS

We use the method proposed by Chang and Messerschmitt [1]
as the original algorithm. We implement both the original algo-
rithm and our algorithm, and integrate them, for comparison,
into our DCT-domain video transcoder as the inverse motion
compensation module, respectively. The input of the transcoder
is an MPEG-coded video bit-stream. To evaluate the perform-

Fig. 2. 1-D windowing operation.

L1

w 8-w

L2

L3

Fig. 3. 1-D block extraction.0 M N-1

yl(n)

n

N-1M0

yr(n)

n

0 M N-1
n

y(n)

Σ

ance of our algorithm, we transcode all P and B frames in the
incoming bit-stream back to I frames by DCT-domain inverse
motion compensation. First, we will investigate the distortion
caused by the algorithm by comparing the PSNR of those I
frames recovered from P or B frames using both algorithms.
Then we will measure the speed of both algorithms to show the
speed improvement of our algorithm. To test our algorithm
more efficiently, we select four video sequences with intensive
motion activities, i.e., “foreman”, “coastguard”, “mobile” and
“stefan”. All sequences are CIF resolution with 352 pixels per
line and 288 lines. To evaluate the performance of our algorithm
at different coding bit-rates, the sequences are encoded at 4
Mb/s and 1 Mb/s respectively. Fig. 4 shows the PSNR result of
each reconstructed frame of “coastguard”. The average PSNR
degradation is 0.12dB at 4 Mb/s and 0.35dB at 1 Mb/s. The
results of average PSNR degradation for other sequences are
0.11 dB in “foreman”, 0.22 dB in “mobile” and 0.16 dB in
“stefan” at 4 Mb/s, and 0.29 dB in “foreman”, 0.51 dB in “mo-
bile” and 0.36 dB in “stefan” at 1 Mb/s respectively. The PSNR
degradation depends on the images. For example, in the se-
quence “mobile”, the pictures have a lot of strong edges and are
very dynamic, hence the AR model of our algorithm is not accu-
rate. As a result, the PSNR of “mobile” degrades more than that
of other sequences. Similarly, at low bit-rate, since each block in
the frame is independently quantized by a large quantization
factor, the correlation between adjacent blocks is reduced. Thus,
the local bandwidth estimation based on the AR model may not
be accurate enough, which causes more degradation at low bit-
rates as shown in the experimental results. However, for both
encoding bit-rates, the amount of distortion introduced by the
proposed algorithm is hardly visible. A by-product of our algo-
rithm is to reduce the blocking artifacts in images coded at very
low bit-rates because the local bandwidth constrained inverse
motion compensation also works as a low-pass filter to the re-
constructed block. To show this, we encode the gray-level im-
age “Lena” at 0.21 bits/pixel using JPEG. Then we shift the
image by 4 pixels in the vertical direction and reconstruct the
shifted image using inverse motion compensation. The recon-
structed images by the original algorithm and our algorithm are
shown in Fig. 5(a) and Fig. 5(b), respectively. We can see the
image reconstructed by our algorithm is smoother than that by
the original algorithm. Additionally, we apply the blocking arti-
fact measuring method proposed in [7] to both reconstructed
images. The measurement results are 6.1 for the image recon-
structed by the original algorithm and 3.5 for the image recon-
structed by our algorithm, respectively. The results also show
that the blocking artifacts in the image reconstructed by our
algorithm are much less than that in the image reconstructed by
the original algorithm. In general, our algorithm can save more
computations as the encoding bit-rate is reduced since the DCT
block is sparser. In Tables I, we list the average computation
time to recover one P or B frame to an I frame by both algo-
rithms at bit-rates of 4 Mb/s and 1 Mb/s, respectively. The com-
puting time is measured on a Windows NT workstation with
300MHz Pentium II CPU, and 512MB memory. The savings in
computation time for reconstructing one P or B frame are 25-
30% at 4 Mb/s, and 45-55% at 1Mb/s.

4. CONCLUSIONS

In this paper, we proposed a novel local bandwidth constrained
inverse motion compensation algorithm, in which only those
DCT coefficients inside the estimated bandwidth are computed.
The local bandwidth estimation is based on the assumption that
the image can be modeled as two separable AR sequences in the
horizontal and vertical directions, respectively. On the average,
our algorithm can reduce the computation time by 25-30% at 4
Mb/s, and 45-55% at 1Mb/s, compared to Chang’s algorithm.
However, the video degradation caused by our algorithm is
invisible for both high bit-rate and low bit-rate coded video
sequences. Since our algorithm can work on top of the fast algo-
rithm proposed in [3, 4], we could expect further improvement
with a combination of our algorithm and those in [3, 4]. A by-
product of the proposed algorithm is a reduction of blocking
artifacts in very low bit-rate compressed video sequences. Some
other applications, such as DCT-domain scene-cut detection and
DCT-domain feature extraction for video indexing, can also
benefit from the fast inverse motion compensation algorithm
proposed in this paper.

REFERENCES

[1] S. -F Chang and D. G. Messerschmitt, “ Manipulation
and Compositing of MC-DCT Compressed Video,” IEEE
Journal on Selected areas in Communications, vol. 13,
no.1, Jan. 1995.

[2] S. Acharya and B. Smith, “Compressed Domain
Transcoding of MPEG,” Proc. IEEE International Con-
ference on Multimedia Computing and Systems-1998, pp.
295-304, 1998.

[3] N. Merhav and V. Bhaskaran, “ Fast Algorithm for DCT-
Domain Image Down-Sampling and for Inverse Motion
Compensation,” IEEE Trans. Circuits and Systems for
Video Technology, vol. 7, no. 3, pp. 468-476, June 1997.

[4] Pedro A. A. Assuncao and M. Ghanbari, “A Frequency-
Domain Video Transcoder for Dynamic Bit-Rate Reduc-
tion of MPEG-2 Bit Streams,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 8, no. 8, pp. 953-967,
Dec. 1998.

[5] M. Bhatt and U. Desai, “Robust image restoration algo-
rithm using Markov random field model,” CGVIP:
Graphical Models and Image Processing, vol. 56, pp. 61-
-74, 1994.

[6] T. Sikora and H. Li, “Optimal Block-Overlapping Syn-
thesis Transforms for Coding Images and Video at Very
Low Bitrates,” IEEE Trans. Circuits and Systems for
Video Technology, vol. 6, no. 2, pp. 157-167, Apr. 1996.

[7] Z. Wang and A. C. Bovik, “Blind Measurement of
Blocking Artifacts in Images,” ICIP-2000, Vancouver,
Canada, pp. 981-984.

Table I Time to convert a P or B frame to an I frame at bit-rate of 4 Mb/s and 1 Mb/s (Unit: second)

The original algorithm The proposed algorithm
4 Mb/s 1 Mb/s 4 Mb/s 1 Mb/s

Video sequence

P frame B frame P frame B frame P frame B frame P frame B frame
“foreman” 0.3137 0.4738 0.2512 0.3987 0.2387 0.3644 0.1324 0.2152

“coastguard” 0.2374 0.3417 0.1912 0.3099 0.1700 0.2464 0.0937 0.1490
“mobile” 0.3487 0.4136 0.2983 0.3686 0.2513 0.3113 0.1550 0.2061
“stefan” 0.2057 0.3667 0.1636 0.2941 0.1370 0.2484 0.0743 0.1408

0 10 20 30 40 50 60 70 80 90 100
34

35

36

37

38

39

40

41
PSNR of "coastguard" at 4Mb/s

P
S

N
R

 (
dB

)

frame number

original method
proposed method

(a) (b)

0 10 20 30 40 50 60 70 80 90 100
30

30.5

31

31.5

32

32.5

33

33.5

34
PSNR of "coastguard" at 1Mb/s

P
S

N
R

 (
dB

)

frame number

original method
proposed method

(b)
(a) (b)

Fig. 4. PSNR results of each reconstructed frame in “coastguard”.

Fig. 5. (a) reconstructed image “Lena” by the original algorithm;
 (b) reconstructed image “Lena” by the proposed algorithm.

