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ABSTRACT

In this paper, we propose and study an adaptive delta mod-
ulator that has improved SNR performance and better ro-
bustness in tracking highly varying signals. The step-size
adaptation used in this modulator is based on information
about the absolute value of the quantizer input. The mod-
ulator is shown to be free of zero-input limit cycles and is
BIBO stable.

1. INTRODUCTION

Adaptive delta modulation (ADM) is used widely in coding
TV and speech signals. ADM attempts to increase the dy-
namic range and the tracking capabilities of fixed step-size
delta modulation. In feedforward adaptation, the step size
of the quantizer is adapted in proportion to the input signal
strength [1]. In feedback adaptation, the adaptation is made
based on the history of the quantizer’s output. More details
on ADM and its applications can be found in [2]-[5].

In this study we develop an adaptive delta modulator
that is based on estimating the strength of the input to the
quantizer. In the next section, we explain the structure of the
proposed modulator. In Section 3, we perform limit cycle
and stability analysis of the modulator. In Section 4, we
show some simulation results.

2. MODULATOR STRUCTURE

For the sake of motivation, consider the plot shown in Fig-
ure 1 and assume that we want to construct a signal v(n)
that tracks a signal z(n) (e.g., a step signal). This can be
achieved according to the following construction. At each
instant of time, we start with the value v(n — 1) and update
it to v(n) so that this new value is closer to z(n) than its old
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value. The update is based on the difference between z(n)
and v(n — 1), defined by

eo(n) = z(n) —v(n — 1) (@)
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Fig. 1. Response of an output signal v(n) tracking a step
input z(n).

The signal v(n — 1) is increased or decreased by a pos-
itive amount d(n) depending on the size and sign of this
error. Intuitively, if the error is ’large’ we employ a large
value for the correction term d(n) and if the error is *small’
we employ a smaller correction term. More specifically, in
our construction, the value of d(n) is made to change by
a constant factor of a or 1/, where a > 1. The law by
which d(n) varies is chosen as

d(n—1), ifleq(n)| >d(n—1)
d(n) = {gd(Z —1), otr|1fervx7/1is<|e. " &

The sign of the error, e, (n), decides whether v(n — 1) in-
creases or decreases at each time instant. Thus, the signal



v(n) is varied according to the adaptation rule

| v(n) =v(n—1) +sign[ea(n)]d(n) | (3

Observe that the correction term d(n), also called step-size,
can be expressed in the equivalent form

d(n) = a“’(")d(O) 4)
where
| w(n) =w(n—1)+q(n) | (5)
and
| g(n) = sign[|ea(n)| — d(n— 1)] | (6)

This alternative representation allows us to describe the scheme

for updating v(n) in block diagram form, as shown in Fig-
ure 2. The top and bottom parts of the figure implement
equations (4) and (3), respectively.
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Fig. 2. Adaptive Delta Modulator.

The diagram shown in Figure 2 is the proposed adaptive
delta modulator, with the upper part being the adaptation
scheme of the quantizer step-size. The adaptation signal
d(n) is tracking the absolute value of the error signal e, (n).

3. ANALYSIS

In this section, we show that the proposed modulator is both
free of zero-input limit cycles for a proper range of a. Fur-
thermore, the Bounded Input Bounded Output (BIBO) sta-
bility of the modulator is proven with an upper bound on
.

3.1. LimitsCycles

The initial condition response of the modulator described
by equations (1)—(3) is obtained by setting the input signal
z(n) to zero. The initial condition response of |u(n)| and
d(n) is shown in Figure 3. Note that the signal d(n) goes
through two stages, increasing and then decreasing stages.
We will prove that in both stages, the energy of the output
signal v(n) decays monotonically to zero.

Fig. 3. Zero-input response and corresponding step size tra-
jectory of the modulator.

Consider first the case when
[v(n —1)| > d(n —1).

Using (6), we have
g(n) = +1 @)

and the step size d(n) will increase by a factor of a. The
output signal will be

v(n) =v(n — 1) — ad(n — 1)sign[v(n — 1)]. (8)
Squaring both terms, we get
v?(n) = v*(n—1) — 2ad(n —1)|v(n — 1)| + a*d*(n —1).
If a < 2then ©
2ad(n — 1)|v(n —1)| > o?d*(n — 1).

Therefore,

‘vz(n) <v*(n—1) ‘ (10)

In other words, the signal v(n) will decrease in amplitude
while d(n) still increases until the other case is satisfied,
namely,

d(n —1) > |v(n —1)|.

In this case,
g(n) = -1

causing the step size d(n) to start decreasing by 1/a. The
output signal is then given by

v(n) =v(n—1) — éd(n —1)signfo(n —1)]. (11)
The energy function is

v (n) = v (n—1) %d(n— Dio(n—1)|+ %d2(n— 1),
(12)



since d(n) = Ld(n — 1) we have
v (n—1)— %d(n — ) p(n—1)] = v2(n) — &(n). (13)

Since d(n — 1) > [v(n — 1)}, itis also true that
v’(n—=1) <d(n —1)|v(n =1)|. (14)

Moreover, if a < 2 then we can write

P(n—1) < %d(n — Dfo(n —1)].

From equation (13), we conclude that

v*(n) < d*(n) (15)
or

lv(n)| < d(n). (16)
Thus,

gln+1)=-1

and equations (11)-(16) will repeat. This indicates that the
signal |v(n)| is trapped under the positive quantity d(n)
which is decaying exponentially to zero.

Since in both cases (g(n) = +1 and g(n) = —1), v%(n)
is decreasing monotonically to zero, we conclude that the
modulator is free from zero-input limit cycles if a < 2.
Notice that the above analysis is independent of the initial
condition of v(n).

3.2. BIBO Stability

In [6, 7], we showed that the quantizer with the adaptation
scheme in Figure 2 can be replaced by a time varying gain
K (n). Then, the ADM can be redrawn as shown in Figure
4. The gain K (n) is expressed as

K(n) = a%™ (17)

where eg4(n) is the quantization error associated with the
one-bit quantizer that appears in the adaptation block. We
assume that e4(n) is uniformly distributed between [—1, 1].

X0 1Y) TQ 1 v(n)
- L 171
Tv(n—l)
[2}]

Fig. 4. Equivalent block diagram for the adaptive delta mod-
ulator.

The output of the modulator is now given by

v(n) = v(n — 1) + K(n)e,(n). (18)

That is,
v(n) = (1 — K(n))v(n — 1) + K(n)z(n) (19)

or

-

o= 3]

If the input signal z(n) has a bound A, then

(1-K@)K@(). @0

K(n)z(n)| <maxA 21
[K (n)z(n)]| < max @)

where
max = a. (22)

Now, we can write
lo(n)| <ad Y ] (1 - K (). (23)
i=1 j=i
We have shown in [6] that if we choose « such that
27l <a<2 (24)

then a bound L can be found that satisfies

[1-K({n)|<L<1. (25)
In this case,
lv(n)| < aAZ L. (26)
i=1

We conclude that the modulator output is bounded by

lv(n)| < aA (27)

1-L
and therefore, the modulator is BIBO stable under the suffi-
cient condition (24).

4. SIMULATION

A speech signal is sampled at the rate of 22kHz. Then,
high information delta modulation (h.i.d.m), Constant Fac-
tor Delta Modulation (CFDM), and the new modulator are
applied to code the speech signal. Both quantitative and
subjective measures are used in the comparison process.
The comparison is made without filtering the resulting voice
signal. Figure 5 shows the original wave form together
with the coded signals v(n) using both the new ADM and
h.i.d.m. (from top to bottom). We notice that h.i.d.m. failed
to track the speech signal when high variations occur. On
the other hand, the new ADM shows high robustness to sig-
nal variations. The signal-to-noise ratio (SNR) is used here
to describe how well both modulators code the speech sig-
nal.
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Fig. 5. Speech wave form coded by (from top to bottom):
8-bit PCM, New ADM, and h.i.d.m.
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Fig. 6. Performance of the proposed ADM compared to
h.i.d.m. and CFDM at the same bit rate.

Figure 6 shows a comparison between the performance
of the new modulator and that of h.i.d.m. and CFDM at the
same bit rate. The exponent term « is chosen to be 2.2 and
an initial value for the step size adapter of 0.005 is used.
From the figure, we notice the following. The new modu-
lator outperforms the other two modulators. Moreover, the
new modulator shows more steady values of SNR with re-
spect to change in the input strength. In a subjective test, the
encoded speech signal using the proposed ADM modulator
sounds more realistic than that encoded using h.i.d.m. and
CFDM.

In another test, we investigated the effect of the expo-
nent term « on the performance of the proposed ADM. Fig-
ure 7 shows the SNR performance of the proposed ADM
with « ranging from 1 to 4.5. The result shows a concave
behavior with an optimum value around o = 2.2.
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Fig. 7. SNR performance of the new ADM versus the expo-
nent term .

5. CONCLUSION

In this study, we proposed an adaptive delta modulator. An-
alytical results show that the proposed modulator is free of
zero-input limit cycles and is BIBO stable. Simulation re-
sults of the modulator show superior performance compared
to other schemes. Extensions to sigma-delta modulation ap-
pear in [6, 7].
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