
DESIGN OPTIMIZATION OF MAIN-PROFILE MPEG-2

AAC DECODER
Kyoung-Ho Bang*, Nam-Hun Jeong*, Young-Cheol Park**, and Dae Hee Youn*

*ASSP Lab., Dept. of Electrical and Electronic Eng., Yonsei University, Seoul, KOREA
**CSPR, Yonsei University, Seoul, KOREA

E-mail: euphony@cyclon.yonsei.ac.kr

ABSTRACT
In this paper, a system architecture optimized for the 2-channel
main-profile MPEG-2 AAC decoder is presented. In order to
enable an efficient job scheduling and allocation, the presented
system comprises three hardware modules: Huffman decoder
module, predictor module, and processing core module which is
programmable using an assembly language of its own. Huffman
decoder is designed to finish the requested job in only 1 clock
cycle time and the predictor forms parallel processing with other
modules, so that utilization of the system resource is maximized.
The developed system has been coded in VHDL and MPEG-2
AAC decoding algorithm is programmed using the assembly of
the processing core. For the verification of decoding algorithm,
the 16-bit PCM output of the system was compared with the
result of the floating-point simulation, and the result showed the
maximum of 2-bit difference. Functional simulation verified that
the developed system can decode standard MPEG-2 AAC main-
profile bitstreams in real-time with high accuracy.

1. INTRODUCTION

In recent contexts of multimedia and applications, new demands
for audio coding arise. As the high coding efficiency to cope
with limited bandwidth has become the issue of most importance,
a new MPEG standard, called advanced audio coding (MPEG-2
AAC, ISO/IEC 13818-7 [1]) has been standardized. This new
standard exhibits many advantages over other MPEG audio stan-
dards. The MPEG-2 AAC standard provides very high audio
quality without compatibility-based restrictions. It combines the
coding efficiency of a high-resolution filter bank, prediction
technique, temporal noise shaping (TNS) technique, and Huff-
man coding [1][2]. Due to these advantageous features, this new
standard constitutes the kernel of the MPEG-4 AAC audio stan-
dard [3].

MPEG-2 AAC system offers different tradeoffs between quality
and complexity depending on the application. For this purpose
three profiles have been defined: main profile, low-complexity
(LC) profile, and sample rate scalable (SRS) profile [1]. Among
these three profiles, the main profile provides the highest quality
but also demands the highest complexity since it contains all the
tools the exception of the gain control tool [2].

Thus, for the implementation of the main-profile MPEG-2 AAC
decoder, heavy computational load and memory resource re-
quirement need to be resolved. These problems are mainly con-
cerned with Huffman decoding, prediction, and a high-resolution
filter bank, among the routines constructing MEPG-2 AAC de-
coding algorithm. The characteristic of the tools are summarized
as followings:

z Huffman decoding: The Huffman code uses variable-
length codewords to further reduce the redundancy of
the scalefactors and the quantized spectrum data. One
scalefactor Huffman codebook and 11 spectrum Huff-
man codebooks are used in AAC. But storing these
Huffman codebooks requires large memory. Also, code-
book search demands a large amount of computational
cycles.

z Prediction: Prediction is used to improve redundancy
reduction and is especially effective for stationary sig-
nals. A second-order backward-adaptive predictor re-
duces the bit rate for coding subsequent subband sam-
ples in a given subband based on the quantized spectrum
of the previous frame. But the state variables of the pre-
vious frame are associated with heavy memory resources.

z High-resolution filter bank: Rather than the hybrid filter
bank of MPEG audio layer-3, AAC uses a modified dis-
crete cosine transform (MDCT). Together with the in-
creased window length, adapted window shape function
and transform block switching, MDCT outperforms the
filter banks of previous coding methods and provides
better frequency selectivity for the filter bank. But this
filter bank produces high computational loads.

In this paper, we propose a system architecture that is optimized
for the 2-channel MPEG-2 AAC decoder supporting the main
profile. To solve the problems mentioned above, we developed
an efficient processing architecture. The developed system com-
prises three hardware modules: Huffman decoder module, pre-
dictor module, and processing core module which is programma-
ble using an assembly language of its own. By forming the
hardware modules in parallel processing structure, we maximized
the system efficiency. Also, in order to ease the burden due to the
high-resolution filter bank, the fast IMDCT algorithm suggested
by Duhamel et al. [4] is implemented in Assembly software.

The organization of this paper is as follows. A design optimiza- This work was supported by Electronics and Telecommunications
Research Institute (ETRI).

tion of AAC algorithm is developed in Section 2, followed by
detailed description of the architectural design in Section 3. The
result of the simulation and the verification are presented in Sec-
tion 4, and conclusions are reached in Section 5.

2. DESIGN OPTIMIZATION

2.1 Huffman decoding tool

In the MPEG-2 AAC decoder, one of the 12 Huffman codebooks
is selected by the side information of bitstream. Then, Huffman
codeword is unpacked from bitstream referring selected Huffman
codebook. The quantized spectral coefficients are obtained using
Huffman code index of unpacked Huffman codewords. Since
Huffman decoding tool contains 12 Huffman codebooks, this
tool needs large memory space. Unpacking Huffman codeword is
associated with various operations demanding relatively low
computational power, which makes the control of DSP core labo-
rious.

In this study, we designed a Huffman decoder using fast hard-
wired logics. The designed Huffman decoder can decode one
Huffman code index in 1 clock cycle time. Table 1. compares the
hardware implementation of Huffman decoder with software
implementation. Based on these, it is clear to see that the hard-
ware implementation provides incomparable efficiency to the
software implementation.

Table 1. Huffman decoder according to implementa-
tion method

 Implemented by H/W Implemented by S/W

Method
Combinational logic
(logic-gate & MUX)

Searching codebook
(worst case 289 times)

Speed 1 clock cycle
Variable according to

cases
Memory

requirement
Unnecessary

Fairly large-sized
ROM

Efficiency Efficient Inefficient

2.2 Prediction tool

MPEG-2 AAC uses the prediction tool to improve redundancy
reduction and the tool is especially effective for stationary sig-
nals. Predictor exploits the autocorrelation between the spectral
component values of consecutive frames, and uses a second-
order backward-adaptive lattice filter to predict each spectral
coefficient. For each spectral component up to 16 kHz there is
one predictor and an LMS algorithm is used for each predictor
[2].

So, prediction tool requires a great number of floating-point
multiplications and additions, and a large number of storage
elements for the status variables of each predictor. In this study,
we implemented the predictor using hardwired logic containing
floating-point arithmetic unit and memory module. Since the
prediction and other processes are independent, they can be op-
erating in parallel to increase the processing speed of the
decoding system.

2.3 Fast T/F transform

Filter bank tool performs the conversion of the time-frequency
representation of the encoded signal into the time-domain signal.
This conversion is done by the inverse modified discrete cosine
transform (IMDCT), which employs a technique called time-
domain aliasing cancellation (TDAC) [2].

The analytical expression for the IMDCT is

()∑
−

=

−=










 ++=

1
2

0
0,, ,1,...,0,

2

12
cos

2
N

k
kini Nnknn

N
X

N
x

π (1)

where n=sample index

N=transform block length

 i = block index

 n0 = (N/2+1)/2.

Since the method of computing xi,n using Eq.(1) contains many
computational redundancies, a fast algorithm should be used. In
this study, we implemented the filter bank tool using the fast
IMDCT algorithm proposed by Duhamel et al. [4]. This algo-
rithm employs an N/4-point complex FFT for the N-point
IMDCT, so that it can reduce the computational loads of overall
system by a factor of 10. Fig. 1. shows a flow diagram of the
algorithm

Pre- IFFT

N/4-point complex
Inverse FFT

Post- IFFT

De-Inter leaving

�O�P

�OuVY TY�TXPR��O�P

 O�P

�O�P
Fig. 1. Flow diagram of the fast IMDCT algorithm by

Duhamel et al. [4].

2.4 Proposed system architecture

The architecture of the developed system is shown in Fig. 2. The
overall system consists of a dedicated processing core and two
hardwired logic modules.

The hardwired logic modules are the Huffman decoding module
and the prediction module. Due to the high computational loads
of Huffman decoding tool, its architecture design must be fo-
cused on the fast operation. Since prediction tool needs high-
accuracy operations, high computational power, and a large
amount of memory requirement, it must be designed to contain
floating-point arithmetic unit and external memory modules.

Inverse
Quan t i ze r

No ise less
D e c o d i n g

Sca le
Fac tors

M / S

Pred ic t ion

Intensi ty /
Coup l i ng

T N S

Gain Cont ro l

F i l te r Bank

Bitstream
Demultiplex

M/S,
Intensity

Inverse
Quant izer

Sca le
Factors

Fi l ter Bank

TNS

Huf fman
Decoder

Predictor

hhj

h����

z�����

v�����

{���

z�����

w����������� kzw j���w����������� kzw j���

o�������� s�����o�������� s�����

twlnTY hhj h���� k������twlnTY hhj h���� k������

Noiseless
Cod ing

Fig. 2. The overall architecture of the developed
MPEG-2 AAC decoding system .

The processing core is a 20-bit fixed-point programmable proc-
essor suitable for audio signal processing [5]. It performs noise-
less coding, inverse quantizer, scalefactors, M/S intensity stereo,
TNS, and filter bank tool.

3. DESIGN OF HARDWARE MODULES

3.1 Huffman decoder

The Huffman decoding module is designed using combinational
hardwired logic to reduce the computational loads. This module
consists of 12 Huffman table modules, and Huffman table select
logic selects one of 12 Huffman table modules. Each Huffman
table (codebook) ROM and a Huffman index select logic, which
compares bitstream data with Huffman table ROM data and re-
turns the adequate Huffman code index. With this architecture,
the decoding process takes only 1 clock cycle time. The architec-
ture of Huffman decoding module is shown in Fig. 3.

Bitstream Buffer (19bit)

MUX

H
u

ff
_t

ab
_S

el
ec

t

4

H
u

ff
_t

ab
_m

o
d

u
le

 0

H
u

ff
_t

ab
_m

o
d

u
le

 1

H
u

ff
_t

ab
_m

o
d

u
le

 1
1

Huffman
Table
Select
Logic

9
DATA BUS

MUX

5

Huffman table 11

Huffman Index
Select Logic

19 19

Bitstream

9

Huff_Index

Huff_tab_module 11

Code Length
Select Logic

5

Code_length

Fig. 3. Huffman decoder architecture

3.2 Predictor

Prediction tool uses a second-order backward lattice filter to
predict each spectrum coefficient. The resolution of the predic-
tion tool should support high-accuracy operations. In this design,
we employed a 16-bit floating-point arithmetic unit. By using a

floating-point unit, it is also possible to reduce the power con-
sumption of the system. DAG module generates the address of
various status variables of predictor, and predictor controller
performs control between arithmetic unit and DAG module. The
architecture of predictor is shown in Fig. 4.

Predictor
Control ler

16-bi t
F loat ing-Point

A L U

Data Address
Generator

Memory Data Bus

Memory Address Bus

Fig. 4. Predictor architecture

3.3 Processing core

Processing core module is an application-specific dedicated
processor, whose architecture is suitable for audio signal proc-
essing. It adopts 3-stage pipeline for enhancing the performance
and the Harvard architecture for efficient pipelining. This proces-
sor can execute minimal clock speed of 40 MHz.

The processing core is programmable using its own assembly
language and it supports special instructions like UNPACK,
HUFFMAN as well as general arithmetic and logical instructions
including hardware MAC. Especially, UNPACK is a useful in-
struction for bit-parsing. All instructions are completed within a
single cycle.

4. SYSTEM EFFICIENCY

To verify the implemented system, two verifications were applied
to the designed system. First verification was to examine the
validation of the decoding algorithm with the designed system,
and second one was to verify the feasibility of the real-time op-
eration for the decoding process. For these two verifications, we
used the C-language based simulator.

Algorithmic verification was carried out by comparing the results
of floating-point and fixed-point simulations. These two simula-
tions were performed using C-language in algorithm design step.
The floating-point simulation was for the verification of the
MPEG-2 AAC decoding algorithm and the fixed-point one con-
cerned is with reducing the error due to finite word-length re-
striction. The requirements of ISO/IEC 13818-4 compliance test
[6] are that NL (noise level) be less than –101dB FS and MER
(maximum error ratio) be less than 1. The performance of the
implemented system is shown in Table 2. Np is the number of
processing-bit and No is the number of output PCM bit.

Table 2. The test of the implemented decoding system

 No = Np No = 16 No = 20

Np NL MER NL MER NL MER

16 -85.6 5.05 -85.6 5.05 -85.6 5.05
17 -90.5 3.15 -90.3 3.19 -90.5 3.15
18 -94.6 2.27 -94.0 2.33 -94.6 2.27
19 -97.7 1.39 -96.5 1.62 -97.7 1.39
20 -100.2 1.11 -97.8 1.25 -100.2 1.11
21 -104.6 0.65 -100.0 0.75 -104.5 0.65
22 -109.8 0.64 -100.9 0.64 -109.7 0.64
23 -114.8 0.64 -101.2 0.64 -114.5 0.64
24 -118.1 0.64 -101.3 0.64 -117.3 0.64

The verification of real-time decoding was carried by comparing
the number of the clock cycles in the worst simulation case with
that of the required clock cycles for the real-time decoding.
When 48kHz sampling frequency is considered and the process-
ing core operates at 40MHz, the number of clock cycles for de-
coding one time sample in real-time is

)(3.833
1048

1
1040

1
3

6 cycles
F

f
s

clk =
×

××=×

Therefore, the decoding system must finish the entire processing
in less than 853,333 clock cycles a frame. Table 3 summarizes
the required clock cycles in each decoding step. Table 2 indicates
that designed MPEG-2 AAC decoding system consumes less
than 361,828 cycles to decode one frame of audio. For the results
of Table 3, worst simulation case was considered. The result of
real-time verification shows that the designed system can decode
a 2-channel MPEG-2 AAC main profile bitstream in real time
with high efficiency. The complexity of the implemented system
is summarized in Table 4. The proposed design is implemented
in VLSI using SAMSUNG 0.35µm 3.3V CMOS technology and
the gate count of the system is summarized in Table 5. This de-
coding system uses less resource and complexity than other case
can be found in [7].

Table 3. Clock cycles to decode MPEG-2 AAC bit-
stream

Decoding process No. of cycles MIPS

Noiseless coding 112,140 5.26

Stereo 13,560 0.64

Prediction 15,430 0.65

TNS 105,370 4.94

Filter bank 115,328 5.41

Total sum 361,828 16.9

Table 4. Complexity of the implemented system

Program Memory 4.1k word

Data ROM 5.5k word

Data RAM 7.1k word

Table 5. The gate count of MPEG-2 AAC decoder

DSP Core 23145.0 gates

Huffman Decoder 3987.5 gates

Predictor 6673.0 gates

5. CONCLUSIONS

We have designed a real-time MPEG-2 AAC decoding system
supporting the main-profile. The designed system has a hybrid-
architecture of a fixed-point processing core for the software
implementation and two hardwired logic modules: Huffman de-
coder module and predictor module. The designed system can
support all decoding tools except for coupling channel tool, and
sampling rates of 32, 44.1, 48kHz.

To verify the designed system, simulator model has been used in
C-language. The 16-bit PCM output of the system was compared
with the result of the floating-point and fixed-point simulation to
evaluate the accuracy of the system. The result of simulation
showed that both the implemented system and fixed-point C
model provide the same accuracy. The results of floating-point
and fixed-point simulations showed the maximum of 2-bit differ-
ence when the 16-bit PCM outputs were compared.

Required clocks for the real-time decoding were calculated as
853,333 cycles a frame which when 40 MHz DSP core was con-
sidered. The designed system needed only 361,828 cycles (16.9
MIPS) a frame for the decoding of 2-channel MPEG-2 AAC
main profile bitstreams with high efficiency.

6. REFERENCES
[1] ISO/IEC JTC1/SC29/WG11 No. 1650 “IS 13818-7

(MPEG-2 Advanced Audio Coding, AAC)”, Apr., 1997.
[2] M. Bosi and et al., “ISO/IEC MPEG-2 Advanced Audio

Coding, J. Audio Eng. Soc., Vol. 45, No. 10, pp. 789-814,
Oct., 1997.

[3] ISO/IEC JTC1/SC29/WG11 No. 2203TF “IS 14496-3 (In-
formation Technology - Coding of Audiovisual Objects –
Part 3: Audio – Subpart 4: Time/Frequency Coding)”, May,
1998.

[4] P. Duhamel, Y. Mahieux, and J. P. Petit, “A fast algorithm
for the implementation of filter banks based on ‘time do-
main aliasing cancellation’” Proc. ICASSP, May 1991, pp.
2209-2212.

[5] K.H. Bang, J.S. Kim, N.H. Jeong, K.S. Lee, Y.C. Park, and
D.H. Youn, “VLSI Design of MPEG-2 AAC Audio De-
coder”, Proc. KSPC, pp. 247-250, Sep., 2000.

[6] ISO/IEC 13818-4 (Information Technology – Generic Cod-
ing of Moving Pictures and Associated Audio: Confor-
mance)”, Mar., 1996

[7] http://www.arm.com/sitearchitek/armtech.ns4/163f0eba66e7
7d004125665000520db4/fe1c0898732538f98025691e0054
f482!OpenDocument

