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ABSTRACT

A novel connectionbetweendigit-serialcomputingandskew-
tolerantdominocircuit designis developedandappliedto
thedesignof a 512-bitmodularmultiplier. In our design,a
digit sizeof four bits is efficiently mappedontoafour-phase
overlappingclockingscheme,sothatfour bitsareprocessed
duringeachfull clock cycle. Our architectureis basedon a
modifiedinterleavedmultiplicationalgorithmandusespre-
computedcomplementsof the modulusand a carry save
adderscheme.We alsopresenta techniquefor modeling
time borrowing behavior in skew-tolerantdominousinga
VHDL behavioral description.Thisallowsverylargeskew-
tolerantdominocircuitsto besimulatedefficiently in sucha
way that theessentialtime borrowing behavior is correctly
represented.This simulationmethodologyis usedto verify
thecorrectnessof our designandto determineits through-
put.

1. INTRODUCTION

Modularmultiplicationis widely usedin botherror-control
codingandsecurecommunications.For example,theRSA
public key cryptosystem[1] requiresmodularexponenti-
ation, and this can be computedusing a seriesof modu-
lar multiplications.While several previousmodularmulti-
plication designshave beenpresentedin the literature[2],
[3], [4], [5], [6], our approachis uniquein that we con-
sider both algorithm-level and circuit-level optimizations.
We will presentthe designof a 512-bit unit that takesad-
vantageof the recentlyintroducedhigh-speedcircuit tech-
niqueof skew-tolerantdominoCMOS [7]. Skew-tolerant
domino circuits makeuseof overlappingclock phasesin
sucha way thatall of theclockingoverheadsusuallyasso-
ciatedwith dominoCMOScanbeeliminated,andthis can
resultin asignificantperformanceimprovement.Moreover,
we will show that thereis a naturalmappingof digit-serial
datapathsonto skew-tolerantdominocircuits that leadsto

efficientdesignimplementations.
We also presenta hybrid simulationstrategy that can

beusedto evaluatetheperformanceof largeskew-tolerant
dominocircuits.It is difficult to performacircuit-level sim-
ulationof a512-bitmodularmultiplierdueto thelargenum-
ber of devices. Instead,we usebehavioral VHDL models
with componentdelayvaluesobtainedfrom HSPICEsimu-
lations. This approachyieldsanefficient simulationof the
largecircuit while still allowing thetime-borrowing behav-
ior to bemodeledandobserved.

This paperis organizedasfollows: In Section2, we re-
view previous modularmultiplication algorithmsandthen
presentour modifiedorganization.In Section3, our archi-
tectureis mappedontoa digit-serialimplementation,using
skew-tolerantdominowith four overlappingclock phases.
Thesimulationmethodologyis explainedin Section4, and
the timing resultsaregiven. Our conclusionsaresumma-
rizedin Section5.

2. MODULAR MULTIPLICATION ALGORITHMS

Themodularmultiplicationproblemis definedasthecom-
putationof

���������
mod 	 . It is usuallyassumedthat�

,
�

and 	 are positive integerswith 
�� �
����� 	 .
The basicbit-serialmodularmultiplication algorithmper-
forms subtractionsof the moduluswhenever the interme-
diatevalue for the productgoesout of the allowed range

�� ��� 	 . It is difficult to usea carrysave adder(CSA)
schemebecausethesignmustbeknown at eachstepin or-
der to perform the magnitudecomparison. In Reference
[3], precomputedcomplementsof the modulusareusedto
handlecarry overflows of weight ��� andhigherso that a
CSAschemeis still possible.A quantity � , whichis called
thecomplementof themodulus	 , is introducedsuchthat
� � ��� mod 	 . In otherwords,any carryof weight ��� can
be replacedby anadditionof � . Using the CSA scheme,
wehaveacarryof weight ��� attheleftmostpositionin each



step.This carry is thenreplacedby anadditionof thepre-
computedvariable� , resultingin Algorithm 1:
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Oneiterationstepin Algorithm 1 canbe implemented
by threen-bit CSAs,four precomputedvariables( �8O , �AP ,
�AQ , �AR ), two encodersanda setof multiplexers. Figure
1(a) shows the correspondingarraystructurefor oneitera-
tion, andFigure1(b) showsthelogic functionscorrespond-
ing to nodesA, B, andC. At thefirst step,weneedto calcu-
latetheoverflow carries

���&� �S�T� # , $ �&� �S�T� # , and
����� �S� ��# .

This operationis accomplishedby encoderEnc1 and the
resultsareusedfor selectingthe appropriateprecomputed
variable.
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Fig. 1. Array structurefor Algorithm 1 using a CSA
scheme. (a) One iterationstage. (b) Logic functionsfor
nodesA, B, andC.

We proposea modifiedalgorithmthateliminatesoneof
theCSAs,at thecostof anadditionalprecomputedvariable
( ��U ). Thismodifiedapproachis givenasAlgorithm 2:
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A modularmultiplier basedon Algorithm 2 canbeim-
plementedusingtwoCSAs,fiveprecomputedvariables( � O ,
� P , � Q , � R , � U ), oneencoderanda setof multiplexers,
asshown in Figure2. Comparedto Algorithm 1, it requires
lessarea,it hasasimplerstructureandit resultsin lessprop-
agationdelay.
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Fig. 2. Array structurefor Algorithm 2 using a CSA
scheme. (a) One iterationstage. (b) Logic functionsfor
nodesA andB.

3. DIGIT-SERIAL IMPLEMENTATION USING
SKEW-TOLERANT DOMINO CIRCUITS

A digit-serial implementationof a 512-bit modularmulti-
plier basedon Algorithm 2 is shown in Figure3. The de-
signis composedof two majorcomponents,calledBlock-1
andBlock-2. Eachof thefour instancesof Block-1perform
oneiterationstepin Algorithm 2, so that four consecutive
iterationstepsarecomputedin onefull clock cycle. Each
clock cycle is composedof four overlapping50%duty cy-
cle phases(calledClk1 - Clk4), whereeachphaseis offset
by onequartercycle from thepreviousphase.Theresulting
skew-tolerantdominoCMOSdesigneliminatestheneedfor
intermediatelatchesbetweenclock phasesandallows time
borrowing to occur[7]. Block-1 is implementedusingthe
array structureof Figure 2. The multiplicand

�
is parti-

tionedinto 4-bit digits, in most-significantdigit first order.
Eachindividual bit within a digit is fed into an instanceof



Block-1. On eachsubsequentclock cycle, theintermediate
quantities\ * 2 and \<]G2 areusedasinputsto the next itera-
tion stepuntil the final sumandcarry areproduced.The
propagationdelayaroundthis loop setsthe lower limit on
the periodof onefull clock cycle. Usinga 0.5 micronHP
CMOStechnologywith a supplyvoltageof 3.3V, themini-
mumclockperiodis 9.92ns.

The inputs to Block-2 (i.e., the sum \<]�X and the carry
\ * X ), areavailableafter128clock cycles.Thesetwo words
arethenadded(modN) in Block-2 to obtainthefinal mod-
ular product. The structureof Block-2 is shown in Figure
3(b). Note that the overflow carries \ * X � X � �9# and \<]9^ � X � ��#
arereplacedby anadditionof 0, � � , or �_� , accordingto
thealgorithm.Theintermediatequantity \<]�` [512:0] falls in
therangeof 
a�b\<]�` [512:0]

� B 	 , so thecomparatorsub-
block subtractseither0, 	 or ��	 to ensurethat the final
outputis lessthanN. Block-2 is composedof four 512-bit
carry-selectadders,andeachof thesecarry-selectaddersis
composedof pairs of small ripple-carryaddersand asso-
ciatedmultiplexers. Oneof the ripple-carryadderswithin
eachpair assumesa carry in of 0, while the otheroneas-
sumesa carry in of 1. The actualcarryout from a ripple-
carry adderpair andMUX is usedasthe selectsignal for
the following adderpair and MUX. For a delay-balanced
design,thewidthsof theripple-carryaddersareuniformly
increasedby 1 bit asonegoesfrom the LSB to the MSB
within eachcarry-selectadder. Thedelayof anentire512-
bit carryselectadderis comparableto thatof asingle32-bit
ripple-carryadderbecausethe width of the largestripple-
carryadderis 31bitsandthedelayof theassociatedMUX is
comparableto thatof a 1-bit adder. Theevaluationof each
carry-selectaddercanbe completedwithin two full clock
cycles becausethe clock periodis approximatelyequalto
thepropagationdelayof a 22-bit ripple-carryadder. Since
thelasttwo carry-selectaddersoperatein parallel,a totalof
six clock cyclesarerequiredto completethecomputations
in Block-2.Thismeansthatthetotalnumberof clockcycles
requiredfor theentiremodularmultiplicationis 128 (from
Block-1)+ 6 (from Block-2)= 134.

4. SIMULATION METHODOLOGY AND
PERFORMANCE EVALUATION

We simulatedour modularmultiplier usinga combination
of techniques.Behavioral VHDL codewas written using
specificdelayvaluesfor eachindividuallogicgateandhigher-
level macro.Thedelayvalueswereobtainedfrom HSPICE
simulationsof eachseparatemacrousingestimatedloading
conditions.Thismethodologyprovidesawaytomodeltime
borrowing betweenphasesat a higherlevel of abstraction,
so that large circuits canbe simulatedefficiently. A typi-
cal exampleis the following VHDL processstatementfor
thebehavior of adual-raildominoAND/NAND gate(aand
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Fig. 3. Pipelined implementationof Algorithm 2. (a)
Overall structureandclockingfor theproposeddigit-serial
modularmultiplier. (b) Detailedstructureandclockingof
Block-2.



b aretrue inputs,abandbb arecomplementinputs). Note
that the actionsin both the precharge andevaluatephases
areindicated.

process(clk, a, ab, b, bb)
begin
if(clk = ’1’) then
--evaluate--

if(ab = ’1’) then
if(bb = ’1’) then

fb <= ’1’ after 0.19 ns;
elsif(b = ’1’) then

fb <= ’1’ after 0.24 ns;
end if;

elsif(a = ’1’) then
if(bb = ’1’) then

fb <= ’1’ after 0.23 ns;
elsif(b = ’1’) then

f <= ’1’ after 0.26 ns;
end if;

end if;
elsif(clk = ’0’) then
--precharge--

f <= ’0’ after 0.71 ns;
fb <= ’0’ after 0.62 ns;

end if;
end process;

Figure4 shows thesimulationresultsfor onefull clock
cycle, with thepropagationdelayfor eachblock indicated.
Note that the simulationsallow for a clock skew of 0.1 ns
betweenthephases.Thefigureshows that time borrowing
is takingplacesincethephasecomputationsextendbeyond
the nominalphaseboundaries,as indicatedby the dashed
vertical lines. The total time requiredfor a complete512-
bit modularmultiplicationis

�GB 2 �9ced , wherethe
ced

is 9.92
ns.
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5. CONCLUSION

We have proposeda novel designfor a 512-bit modular
multiplierusingadigit-serialarchitectureandskew-tolerant
dominocircuit techniques.A new algorithmhasbeenpro-
posedthat reducesthehardwarerequirementscomparedto
previous implementations.A digit-serialstructurewith a
digit-sizeof four bits is mappedin a naturalfashiononto
a skew-tolerantdominoclockingschemehaving four over-
lappingclockphases.In thisway, oneoperandbit is utilized
in eachof the four phases,so thata 4-bit digit is processed
in eachfull clock cycle. We have also introduceda high-
level modelingtechniquebasedon behavioral VHDL that
allowsvery largeskew-tolerantdominocircuitssuchasthis
to bemodeledin anefficientmanner. Usingthis simulation
methodology, we have verifiedthecorrectnessof the algo-
rithmanddeterminedthethroughputof theimplementation.

We arecurrentlyextendingthis researchby investigat-
ing the mappingof otherdigit-serial functionalunits onto
themultiplephaseclockingstructureof skew-tolerantdomino.
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