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ABSTRACT

In real speaker verification applications, additive or convolutive
noise creates a mismatch between training and recognition
environments, degrading performance. Pardlel Mode
Combination (PMC) is used successfully to improve the noise
robustness of Hidden Markov Model (HMM) based speech
recognisers [5]. This paper presents the results of applying PMC
to compensate for additive noise in HMM-based text-dependent
speaker verification. Speech and noise data were obtained from
the YOHO [6] and NOISEX-92 databases [13] respectively.
Speaker recognition Equal Error Rates (EER) are presented for
noise-contaminated speech at different signal-to-noise ratios
(SNRs) and different noise sources. For example, average EER
for speech in operations room noise at 6dB SNR dropped from
approximately 20% un-compensated to less than 5% using PMC.
Finaly, it is shown that speaker recognition performance is
relatively insensitive to the exact value of the parameter that
determines the relative amplitudes of the speech and noise
components of the PMC model.

1 INTRODUCTION

It is well known that noise contamination of speech signals
results in increased speech and speaker recognition errors, due to
the consequent mismatch between training and test conditions,
and loss of information. Hence considerable effort has been
applied to the development of robust noise compensation
techniques. These techniques generally fall into two categories,
speech pre-processing and adaptation of the recognition stage.
The first class of methods attempt to pre-process the corrupted
speech such that the resulting parameters are representative of
clean speech. Techniques in this category include spectral
subtraction [2], and spectral mapping [11]. Examples of
techniques that modify the recognition stage include noise
masking [8], HMM decomposition [12] and Paralel Model
Combination (PMC) [5]. Methods based on pre-processing are
often computationally simpler, but have the disadvantage that
any relevant information that is discarded in the pre-processing
stage cannot be recovered for use in recognition. The work in
this paper focuses on the second approach, and in particular on
the use of Parallel Model Combination (PMC) in which speech
and noise HMMs are compiled into a single composite HMM
prior to recognition.

PMC has been applied successfully to HMM-based
automatic speech recognition, where it has been shown to

improve recognition performance on speech contaminated with
additive noise [5]. This paper presents the results of experiments
to investigate the utility of PMC for noise-robust HMM based
text-dependent speaker verification. Clean speaker verification
data from the YOHO database [6], designated as test data, was
mixed with two different types of noises from the NOISEX-92
database [13] at arange of different signal-to-noise ratios. This
data was then processed using clean speech models combined
with the appropriate noise models at the appropriate mixing
levels using PMC. The results show that PMC gives significant
reductions in equal error rates. For example, un-compensated
equa error rates of 20%, 33% and 45% (at +6dB, 0dB and —6dB
respectively) are reduced to 5%, 14% and 32% respectively
using PMC. Further experiments were conducted to measure the
sensitivity of the PMC error rate to changes in the value of the
mixing level. The results show that performance is relatively
insensitive to mixing level, and that restriction to seven different
mixing levels only results in a small increase in error relative to
the experiments with correctly matched mixing levels.

2. NOISE ROBUST SPEAKER
VERIFICATION

The goa of spesker verification is to confirm the claimed
identity of a subject by exploiting individual differences in their
speech. It is useful to distinguish between text-dependent
spesker verification, where the decision is made using speech
corresponding to known text, and text-independent speaker
verification, where the speech is unconstrained [4]. The present
study is concerned with the former. Text-dependent verification
is clearly the simpler problem, and is amenable to word-level
acoustic modelling techniques from automatic speech
recognition, and in particular the use of HMMs. Once the
decision to use HMM techniques has been made, it is natural to
ask whether HMM noise compensation techniques from speech
recognition can aso be applied successfully. The noise
compensation technique that is the subject of the present study is
PMC [5].

3. PARALLEL MODEL COMBINATION
(PMC)

PMC is based on the premise that noise compensation should
occur during the pattern processing stage of speech or speaker
recognition and not during parameterisation. In particular, the
decision that a component of the data is ‘noise’ should emerge



from the recognition process, rather than precede it. In thisway,
al of the information contained in the speech signal is retained
and exploited for correct verification. Although similar to HMM
decomposition [12], PMC has the advantage that it is able to
operate in the cepstra domain and therefore inherits the
advantages of parameter decorrelation.

Let 65 and oy be single Gaussian states of a ‘clean’
speech HMM and a noise HMM respectively, in the cepstral
domain. Suppose that the means and variances of 6sand oy are
denoted by {us, 25} and {un",2\° }. PMC creates a combined
cepstral state 65 ® oy by inverse-transforming {us’,2s} and
{un",2\° } into the linear, spectral domain (via the log spectral
domain), combining them appropriately into a single
distribution, and then mapping this distribution back into the
cepstral domain. During this process, PMC makes a number of
assumptions. It is assumed that speech and noise are
independent, that they are additive, and, during the combination
process, that the sum of two log-norma distributions is log
normal [5].

Both the static and dynamic (velocity and accel eration)
parameters, which are normally included in a cepstrum-based
representation for speech recognition can be compensated using
PMC. However, in this study, only static parameters were
compensated, as it was believed that compensating for the delta
and acceleration parameters would only bring margina
improvements in performance as most of the speaker dependent
characteristics will be removed by the differencing process. The
speech mean and covariance matrix in the log spectra domain
are given by:
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where C isthe cosine transform defined by the matrix
Cij =cos(i(j — 0.5 / B)

Similar expressions exist for the parameters of the noise state.
The mean and covariance matrices for the state 65 ® oy are then
given by:
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where g is a gain matching term which determines the signal-to-
noise ratio.

4, EXPERIMENTAL DATA

The experiments used speech data from three corpora: TIMIT,
YOHO [6] and NOISEX-92 [13]. TIMIT was used to initialise a
set of phoneme-level HMMss, because no phoneme transcriptions
were provided with YOHO.

Speech in the YOHO database is sampled at 8k
samples per second. The corpus consists of recordings of 138
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Figure 1 Distribution of the scaling factor

subjects spesking connected digit phrases in an office
environment. It was chosen because of its established use in
evaluation of speaker recognition systems, and enables the
results obtained from the present experiment to be compared
with those from other laboratories [3].

The NOISEX-92 database contains arange of different
types of noise, including speech noise, car noise, and operations
room noise. It has been used previousy to investigate noise
compensation techniques for automatic speech recognition [5].

5. EXPERIMENTAL METHOD

5.1  Mixing Speech and Noise

The speech level was measured using a software implementation
of the procedure described in [7], which accounted for the
silence intervals present in speech and only caculated the level
for voiced segments. Before applying this process, the speech
data was amplitude scaled to ¥ of the maximum 16-bit integer
value to prevent saturation when noise was added. The speech
signa was then added to the scaled version of the noise signal to
give noise contaminated speech signals at—18dB to +18dB at
6dB SNR intervals.

The actua scaling factor used to obtain a particular
SNR varied between speakers and speech files. Hence for each
SNR the average scaling factor g was computed across all
speakers. This scaling factor was used in the construction of the
PMC models for that SNR. An example of the distribution of
the scaling factor for a single SNR and different speakers and
filesis shownin figure 1.

Since experiments were performed on scaled data, the
enrolment data was also scaled to prevent any mismatch in the
baseline results.

52 HMM System

HMM training and recognition used the Hidden Markov Model
Toolkit (HTK) system, which was easily modified to
accommodate PMC. Speech was parameterised into 39
dimensiona representation based on Mel-Frequency Cepstral
Coefficients (MFCC), using a 25ms Hamming window. This



included the O order energy term, plus velocity (A) and
accel eration (A?) of each coefficient.

Initialy, a total of 57 3-state, 4-component Gaussian
mixture monophone HMMs were created using the TIMIT
database. These were later expanded to 78 tied-state triphones
to cover al possible pronunciations of connected digit pairs, e.g.
29 30_31. The triphones were subsequently used to create
speaker dependent models using speech from the YOHO
database. For each speaker, al 24 utterances in each of 4
enrolment sessions were used for training.

5.3  Recognition and Scoring

Of the 138 speakers in YOHO, 118 were used as authorised
speakers and 20 were used to train a general speaker model
(GSM) [10]. Furthermore, all 4 utterances in the 10 verification
sessions were used to calculate the False Reject Rate (FRR). To
caculate the False Accept Rate (FAR) for each speaker, 40
utterances were randomly chosen from the authorised speaker set
except the speaker on test to form an impostor set. The
authorised spesker model (AS) was then used to recognise
utterances from the impostor set.

For both FRR and FFA, the GSM was used to
normalise scores from the speaker dependent models [1]. The
decision rule used, for a particular threshold t, is as follows:

P(X19)
If ——— 2>t
P(X | GSM)

then ‘Accept’, else ‘Reject’.

The Equa Error Rate (EER) corresponds to the value of t for
with FRR = FAR.

6. EVALUATION

Four sets of experiments were carried out. First, the performance
of the baseline system was tested using clean speech. The second
experiment investigated the degradation in performance when
noise contaminated speech was used in verification without
PMC. Next, the same experiment was performed using PMC.
The second and third experiments considered both operations
room noise (as an example of ‘typica’ noise) and speech noise
(as ‘worst case’). Finaly, the dependency of performance on
the gain matching term, g, was investigated.

6.1 Basdine System Performance

The EER achieved using clean verification speech was 0.57%.
The target, therefore, was to get the EER as close to this value
for all SNRs.

6.2  Un-Compensated System Performance

The results without noise compensation for SNRs varying
between —18dB and +18dB are shown in figure 2. The EER
deteriorated at an average rate of 10% for every 6dB reduction in
SNR. Thistrend continued until performance levelled off at 50%
EER (‘random’ error for atwo class problem). As expected, the
performance degradations were much worse for ‘speech’ noise
than for ‘ operations room’ noise.

60.00

50.00 4 - 1= -1 - 4 - - - e - - o

40.00 -

30.00 +

Equal Error Rate (%)

20.00 +

10.00 +

0.00 -

18 12 6 0 -6 -12 -18
Signal to Noise Ratio (dB)

—a&— Operations Room Noise (Std) —@®— Operations Room Noise (PMC)
—&— Speech Noise(Std) —— Speech Noise (PMC)

Figure 2 Graph of compensated results against un-
compensated results

6.3  Compensated System Performance

PMC compensation was performed using the average scaling
factor obtained during speech and noise mixing to set the gain
matching term g (section 5.1). With PMC, performance at 18dB
was close to the baseline result. Although performance
degradation was still observed as SNR was reduced, this was not
as severe as the un-compensated models. An average of 50%
performance increase was observed between standard and PMC
recognition. However, this was only true until -12dB where the
performance curve of PMC rejoins that of standard recognition.

6.4  Dependency on g

To investigate the dependency of the EER on the gain matching
term g, experiments were conducted using operations room noise
in which the value of g was held constant while the SNR was
varied between +18dB and —18dB. Values of g which were
considered correspond to +18, +12, +6, 0, -6, -12 and —18dB
(figure 3). As one would expect, the results show that sensitivity
to the absolute value of g increases as SNR increases. However,
the results show that performance of the system is relatively
insensitive to the exact value of g, and that for an SNR of RdB,
good performance is obtained with values of g corresponding to
SNRs of Rt6dB. This suggests that good speaker verification
performance can be obtained over SNRs ranging from +18dB to
—18dB using PMC models with g corresponding to no more that
7 different SNRs. For example, at —6dB the best performanceis
actually achieved using the value of g which matches 0dB SNR,
and the error rates for values of g corresponding to —12dB, 0dB
and +6dB are al within 10% of the error rate for the ‘correct’
value of g for —6dB.
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7. CONCLUSION

This paper reports the results of experiments, which investigate
the utility of Parallel Model Combination (PMC) for noise-
robust HMM-based text-dependent speaker verification. Speech
data was taken from the YOHO corpus, and noise data from
NOISEX-92. The system used context-sensitive phoneme-level
HMMs with 4-component Gaussian mixture states. The results
show that the baseline EER of 0.57% for ‘clean’ speech degrades
repidly as a consequence of contamination with ‘speech’ or
‘operations room’ noise. For example the clean speech EER of
0.57% drops to 33% and 41% respectively at 0dB SNR. Using
PMC with the correctly matched gain factor g, the corresponding
figures are 14% and 21%, and both EERs are below 10% at
+6dB SNR. Finaly, it has been shown that performance is
relatively insensitive to the exact value of the gain factor g,
provided that it corresponds to a SNR that is within £6dB of the
true SNR.
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