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ABSTRACT 
 

In real speaker verification applications, additive or convolutive 
noise creates a mismatch between training and recognition 
environments, degrading performance. Parallel Model 
Combination (PMC) is used successfully to improve the noise 
robustness of Hidden Markov Model (HMM) based speech 
recognisers [5]. This paper presents the results of applying PMC 
to compensate for additive noise in HMM-based text-dependent 
speaker verification. Speech and noise data were obtained from 
the YOHO [6] and NOISEX-92 databases [13] respectively. 
Speaker recognition Equal Error Rates (EER) are presented for 
noise-contaminated speech at different signal-to-noise ratios 
(SNRs) and different noise sources.  For example, average EER 
for speech in operations room noise at 6dB SNR dropped from 
approximately 20% un-compensated to less than 5% using PMC.  
Finally, it is shown that speaker recognition performance is 
relatively insensitive to the exact value of the parameter that 
determines the relative amplitudes of the speech and noise 
components of the PMC model. 
 
 

1. INTRODUCTION 
 

It is well known that noise contamination of speech signals 
results in increased speech and speaker recognition errors, due to 
the consequent mismatch between training and test conditions, 
and loss of information.  Hence considerable effort has been 
applied to the development of robust noise compensation 
techniques.   These techniques generally fall into two categories, 
speech pre-processing and adaptation of the recognition stage. 
The first class of methods attempt to pre-process the corrupted 
speech such that the resulting parameters are representative of 
clean speech. Techniques in this category include spectral 
subtraction [2], and spectral mapping [11]. Examples of 
techniques that modify the recognition stage include noise 
masking [8], HMM decomposition [12] and Parallel Model 
Combination (PMC) [5].  Methods based on pre-processing are 
often computationally simpler, but have the disadvantage that 
any relevant information that is discarded in the pre-processing 
stage cannot be recovered for use in recognition.   The work in 
this paper focuses on the second approach, and in particular on 
the use of Parallel Model Combination (PMC) in which speech 
and noise HMMs are compiled into a single composite HMM 
prior to recognition.  

PMC has been applied successfully to HMM-based 
automatic speech recognition, where it has been shown to 

improve recognition performance on speech contaminated with 
additive noise [5]. This paper presents the results of experiments 
to investigate the utility of PMC for noise-robust HMM based 
text-dependent speaker verification. Clean speaker verification 
data from the YOHO database [6], designated as test data, was 
mixed with two different types of noises from the NOISEX-92 
database [13] at a range of different signal-to-noise ratios.  This 
data was then processed using clean speech models combined 
with the appropriate noise models at the appropriate mixing 
levels using PMC.  The results show that PMC gives significant 
reductions in equal error rates.  For example, un-compensated 
equal error rates of 20%, 33% and 45% (at +6dB, 0dB and –6dB 
respectively) are reduced to 5%, 14% and 32% respectively 
using PMC.  Further experiments were conducted to measure the 
sensitivity of the PMC error rate to changes in the value of the 
mixing level.  The results show that performance is relatively 
insensitive to mixing level, and that restriction to seven different 
mixing levels only results in a small increase in error relative to 
the experiments with correctly matched mixing levels. 
 
 

2. NOISE ROBUST SPEAKER 
VERIFICATION 

 
The goal of speaker verification is to confirm the claimed 
identity of a subject by exploiting individual differences in their 
speech.  It is useful to distinguish between text-dependent 
speaker verification, where the decision is made using speech 
corresponding to known text, and text-independent speaker 
verification, where the speech is unconstrained [4]. The present 
study is concerned with the former.  Text-dependent verification 
is clearly the simpler problem, and is amenable to word-level 
acoustic modelling techniques from automatic speech 
recognition, and in particular the use of HMMs. Once the 
decision to use HMM techniques has been made, it is natural to 
ask whether HMM noise compensation techniques from speech 
recognition can also be applied successfully. The noise 
compensation technique that is the subject of the present study is 
PMC [5]. 
 

3. PARALLEL MODEL COMBINATION 
(PMC) 

 
PMC is based on the premise that noise compensation should 
occur during the pattern processing stage of speech or speaker 
recognition and not during parameterisation.   In particular, the 
decision that a component of the data is ‘noise’ should emerge 



 

 

from the recognition process, rather than precede it.  In this way, 
all of the information contained in the speech signal is retained 
and exploited for correct verification. Although similar to HMM 
decomposition [12], PMC has the advantage that it is able to 
operate in the cepstral domain and therefore inherits the 
advantages of parameter decorrelation.  

Let σS and σN be single Gaussian states of a ‘clean’ 
speech HMM and a noise HMM respectively, in the cepstral 
domain.  Suppose that the means and variances of  σS and σN are 
denoted by {µS

c,ΣS
c} and {µN

c,ΣN
c }.  PMC creates a combined 

cepstral state σS ⊗ σN by inverse-transforming {µS
c,ΣS

c} and 
{µN

c,ΣN
c } into the linear, spectral domain (via the log spectral 

domain), combining them appropriately into a single 
distribution, and then mapping this distribution back into the 
cepstral domain.  During this process, PMC makes a number of 
assumptions.  It is assumed that speech and noise are 
independent, that they are additive, and, during the combination 
process, that the sum of two log-normal distributions is log 
normal [5]. 

Both the static and dynamic (velocity and acceleration) 
parameters, which are normally included in a cepstrum-based 
representation for speech recognition can be compensated using 
PMC. However, in this study, only static parameters were 
compensated, as it was believed that compensating for the delta 
and acceleration parameters would only bring marginal 
improvements in performance as most of the speaker dependent 
characteristics will be removed by the differencing process.  The 
speech mean and covariance matrix in the log spectral domain 
are given by: 
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where C is the cosine transform defined by the matrix 

 

)/)5.0(cos( BjiijC π−=  

 
Similar expressions exist for the parameters of the noise state. 
The mean and covariance matrices for the state σS ⊗ σN are then 
given by: 
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where g is a gain matching term which determines the signal-to-
noise ratio.  
 

4. EXPERIMENTAL DATA 
 
The experiments used speech data from three corpora: TIMIT, 
YOHO [6] and NOISEX-92 [13]. TIMIT was used to initialise a 
set of phoneme-level HMMs, because no phoneme transcriptions 
were provided with YOHO.  

Speech in the YOHO database is sampled at 8k 
samples per second.  The corpus consists of recordings of 138 

subjects speaking connected digit phrases in an office 
environment. It was chosen because of its established use in 
evaluation of speaker recognition systems, and enables the 
results obtained from the present experiment to be compared 
with those from other laboratories [3]. 

The NOISEX-92 database contains a range of different 
types of noise, including speech noise, car noise, and operations 
room noise. It has been used previously to investigate noise 
compensation techniques for automatic speech recognition [5].  
 
 

5. EXPERIMENTAL METHOD 
 
5.1 Mixing Speech and Noise 
 
The speech level was measured using a software implementation 
of the procedure described in [7], which accounted for the 
silence intervals present in speech and only calculated the level 
for voiced segments. Before applying this process, the speech 
data was amplitude scaled to ¼ of the maximum 16-bit integer 
value to prevent saturation when noise was added.  The speech 
signal was then added to the scaled version of the noise signal to 
give noise contaminated speech signals at–18dB to +18dB at 
6dB SNR intervals. 

The actual scaling factor used to obtain a particular 
SNR varied between speakers and speech files.  Hence for each 
SNR the average scaling factor g was computed across all 
speakers.  This scaling factor was used in the construction of the 
PMC models for that SNR.  An example of the distribution of 
the scaling factor for a single SNR and different speakers and 
files is shown in figure 1. 

Since experiments were performed on scaled data, the 
enrolment data was also scaled to prevent any mismatch in the 
baseline results. 

 
5.2 HMM System 

 
HMM training and recognition used the Hidden Markov Model 
Toolkit (HTK) system, which was easily modified to 
accommodate PMC. Speech was parameterised into 39 
dimensional representation based on Mel-Frequency Cepstral 
Coefficients (MFCC), using a 25ms Hamming window. This 

Figure 1 Distribution of the scaling factor 



 

 

included the 0th order energy term, plus velocity (∆) and 
acceleration (∆2) of each coefficient.  

Initially, a total of 57 3-state, 4-component Gaussian 
mixture monophone HMMs were created using the TIMIT 
database.  These were later expanded to 78 tied-state triphones   
to cover all possible pronunciations of connected digit pairs, e.g. 
29_30_31. The triphones were subsequently used to create 
speaker dependent models using speech from the YOHO 
database.  For each speaker, all 24 utterances in each of 4 
enrolment sessions were used for training. 
 
5.3 Recognition and Scoring 

 
Of the 138 speakers in YOHO, 118 were used as authorised 
speakers and 20 were used to train a general speaker model 
(GSM) [10]. Furthermore, all 4 utterances in the 10 verification 
sessions were used to calculate the False Reject Rate (FRR). To 
calculate the False Accept Rate (FAR) for each speaker, 40 
utterances were randomly chosen from the authorised speaker set 
except the speaker on test to form an impostor set. The 
authorised speaker model (AS) was then used to recognise 
utterances from the impostor set. 

For both FRR and FFA, the GSM was used to 
normalise scores from the speaker dependent models [1]. The 
decision rule used, for a particular threshold t, is as follows: 
 

If t
GSMXP

SXP
≥

)|(

)|(
   then ‘Accept’, else ‘Reject’. 

 
The Equal Error Rate (EER) corresponds to the value of t for 
with FRR = FAR.  

 
6. EVALUATION 

 
Four sets of experiments were carried out. First, the performance 
of the baseline system was tested using clean speech. The second 
experiment investigated the degradation in performance when 
noise contaminated speech was used in verification without 
PMC. Next, the same experiment was performed using PMC.  
The second and third experiments considered both operations 
room noise (as an example of ‘typical’ noise) and speech noise 
(as ‘worst case’).   Finally, the dependency of performance on 
the gain matching term, g, was investigated. 

 
6.1 Baseline System Performance 

 
The EER achieved using clean verification speech was 0.57%. 
The target, therefore, was to get the EER as close to this value 
for all SNRs.  
 
6.2 Un-Compensated System Performance 
 
The results without noise compensation for SNRs varying 
between –18dB and +18dB are shown in figure 2.  The EER 
deteriorated at an average rate of 10% for every 6dB reduction in 
SNR. This trend continued until performance levelled off at 50% 
EER (‘random’ error for a two class problem).   As expected, the 
performance degradations were much worse for ‘speech’ noise 
than for ‘operations room’ noise. 
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  Figure 2 Graph of compensated results against un-
compensated results 

 
 
6.3 Compensated System Performance 

 
PMC compensation was performed using the average scaling 
factor obtained during speech and noise mixing to set the gain 
matching term g (section 5.1). With PMC, performance at 18dB 
was close to the baseline result. Although performance 
degradation was still observed as SNR was reduced, this was not 
as severe as the un-compensated models. An average of 50% 
performance increase was observed between standard and PMC 
recognition. However, this was only true until -12dB where the 
performance curve of PMC rejoins that of standard recognition. 
 
6.4 Dependency on g 
 
To investigate the dependency of the EER on the gain matching 
term g, experiments were conducted using operations room noise 
in which the value of g was held constant while the SNR was 
varied between +18dB and –18dB.  Values of g which were 
considered correspond to +18, +12, +6, 0, -6, -12 and –18dB 
(figure 3).  As one would expect, the results show that sensitivity 
to the absolute value of g increases as SNR increases.  However, 
the results show that performance of the system is relatively 
insensitive to the exact value of g, and that for an SNR of RdB, 
good performance is obtained with values of g corresponding to 
SNRs of R±6dB.  This suggests that good speaker verification 
performance can be obtained over SNRs ranging from +18dB to 
–18dB using PMC models with g corresponding to no more that 
7 different SNRs.  For example, at –6dB the best performance is 
actually achieved using the value of g which matches 0dB SNR, 
and the error rates for values of g corresponding to –12dB, 0dB 
and +6dB are all within 10% of the error rate for the ‘correct’ 
value of g for –6dB.  
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Figure3 Dependency of the EER on g 

 
 

7. CONCLUSION 
 
This paper reports the results of experiments, which investigate 
the utility of Parallel Model Combination (PMC) for noise-
robust HMM-based text-dependent speaker verification.  Speech 
data was taken from the YOHO corpus, and noise data from 
NOISEX-92.  The system used context-sensitive phoneme-level 
HMMs with 4-component Gaussian mixture states.  The results 
show that the baseline EER of 0.57% for ‘clean’ speech degrades 
rapidly as a consequence of contamination with ‘speech’ or 
‘operations room’ noise.  For example the clean speech EER of 
0.57% drops to 33% and 41% respectively at 0dB SNR.  Using 
PMC with the correctly matched gain factor g, the corresponding 
figures are 14% and 21%, and both EERs are below 10% at 
+6dB SNR.  Finally, it has been shown that performance is 
relatively insensitive to the exact value of the gain factor g, 
provided that it corresponds to a SNR that is within ±6dB of the 
true SNR. 
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