
QUANTIZATION EFFECT ON VLSI IMPLEMENTATIONS
FOR THE 9/7 DWT FILTERS.

Vassilis Spiliotopoulos, N. D. Zervas, Yiannis Andreopoulos, G. Anagnostopoulos, Costas E. Goutis

University of Patras, Dept. of ECE
VLSI Design Lab., Rio 26500, Greece

bspili@ee.upatras.gr

Abstract: In this paper, two basic approaches for
implementing the 9/7 Filtering Unit, used in the
Discrete Wavelet Transform, are addressed. The first is
the lifting scheme approach and the second is the
conventional, convolutional filter approach. Two
architectures are examined for each approach, a simple
– straightforward one and an optimized one,
substituting the multipliers used for scaling with shift –
add operations. The quantization of the constants used
in the calculations is thoroughly explored and the
selection of the data-path bit-width is addressed.
Experimental results based on hardware
implementation, for several quantizations and for the
different hardware architectures of the 9/7 filtering
units are given.

I. INTRODUCTION
Many image and video compression techniques are based
on the Discrete Wavelet Transform (DWT). A great
number of analysis / synthesis filters for the DWT have
been proposed in the past. However, Antonini's 9/7 filter
[1] is the most popular one, since it combines good
performance and rational filter length. It is stressed here
that the 9/7 filter is a default filter of the upcoming
JPEG2000 [2] standards and included in the MPEG4 [3]
standard.

In this paper, aspects related to filter coefficients’
quantization and hardware architecture of the filtering
unit are exhaustively explored. Specifically, Section II
focuses on lifting scheme-based implementation while
Section III examines the conventional convolutional
approach. For each case, the effect of filter coefficients’
quantization in performance, in terms of Peak Signal to
Noise Ratio (PSNR), is presented. Furthermore for both
cases, the straightforward (multiplier-based) and a speed
– area optimized implementation are compared.

Experimental results concerning the PSNR have been
acquired by running a row – column implementation of
the DWT in software, collaborating with a hardware

implementation of the filter under test. The filter
alternatives are mapped on an FPGA, using a prototyping
platform hosting a Xilinx Virtex device. The results are
general and independent from any normalization policy.

II. THE LIFTING SCHEME APPROACH
The lifting scheme based DWT has been included in the
upcoming JPEG2000 standard because it reduces the
arithmetic complexity [4] of the conventional,
convolution based DWT, up to a factor of two.

The lifting-based DWT implementation of filtering as
described in [2] is given bellow. Applying the following
steps to the entire input performs the transformation. The
input is extended before and after the first and last
coefficient, i0 is the index of the first coefficient of the
input and i1 is the index of the coefficient immediately
following the last coefficient.

Forward transformation
Y2n+1 = X2n+1 + α × (X2n + X2n+2) i0-3 ≤ 2n+1 < i1+3 (S1)
Y2n = X2n + β × (Y2n-1 + Y2n+1) i0-2 ≤ 2n < i1+2 (S2)
Y2n+1 = Y2n+1 + γ × (Y2n + Y2n+2) i0-1 ≤ 2n+1 < i1+1 (S3)
Y2n = Y2n + δ × (Y2n-1 + Y2n+1) i0 ≤ 2n < i1 (S4)
Y2n+1 = -Κ × Y2n+1 i0 ≤ 2n+1 < i1 (S5)
Y2n = Y2n / Κ i0 ≤ 2n < i1 (S6)

Inverse transformation
X2n = Κ × Y2n i0-3 ≤ 2n < i1+3 (S1)
X2n+1 = - Y2n+1 / Κ i0-2 ≤ 2n+1 < i1+2 (S2)
X2n = X2n - δ × (X2n-1 + X2n+1) i0-3 ≤ 2n < i1+3 (S3)
X2n+1 = X2n+1 - γ × (X2n + X2n+2) i0-2 ≤ 2n+1 < i1+2 (S4)
X2n = X2n - β × (X2n-1 + X2n+1) i0-1 ≤ 2n < i1+1 (S5)
X2n+1 = X2n+1 - α × (X2n + X2n+2) i0-1 ≤ 2n+1 < i1 (S6)

Where the values of the constants are:
α = -1.586134342 γ = 0.882911075
β = -0.052980118 δ = 0.443506852
Κ = 1.230174105

Each step represents a basic processing element. The
steps S1 → S4 of the forward transformation and the last
four steps, S3 → S6 of the inverse transformation, have
the same structure and can be implemented by a

This work was supported by the project PENED ’99 funded by G.S.R.T
of Greek Ministry of Development.

processing block like the one displayed in Fig. 1 The rest
steps are multiplications with constants (scaling steps).

+

+

××××Constant

In -1 In 0 In +1

Fig.1 Basic processing block of the lifting scheme.

1. QUANTIZATION OF CONSTANTS.

The 9/7 filter is originally based on a floating point data
representation. Since the scope here is hardware
implementation of the 9/7 filter, we focus on the
equivalent filter that uses fixed point (FXP) data
representation. This is due to the fact that floating-point
data-path operators are more complex, occupy more area
and are slower than their FXP counterparts. The aim of
this subsection is to define the effect of quantization of
the FXP representation of samples and filters constants
on image quality, in terms of PSNR, and filter
implementation, in terms of speed and area.

Coding images using the DWT, requires a relatively
small number of decomposition levels, e.g. for a 512×512
picture, 5 or 6 levels are enough. Thus the accuracy of the
calculations may be decreased up to the point that the
PSNR of the transformed and recovered image, ranges
above a certain limit. This way, the bit-width of the filter
data-path can be reduced, resulting to a decrease in
memory requirements and smaller multipliers. The
accuracy of the constants used in the calculations, can
also be decreased, allowing also for the use of smaller
multipliers.

After running the DWT using several gray-scale
images with a color depth of 8 bits/pixel (the same color
depth as that of the luminance component), several sizes
and up to nine layers of transformation, it has been
observed that a dynamic range of –2048 to 2047 is safely
adequate. For a 2’s complement FXP representation, this
translates to 12 bits for the integer part. For the fractional
part, 12 bits provide the accuracy to obtain a PSNR over
50dB for six levels of decomposition. So, a total of 24
bits is used for the data path.

The constants α, β, γ, δ, Κ, 1/Κ are quantized taking in
account the number of bits with value ‘1’, in their
positive representation. That’s because each ‘1’ yields a
term to be summed. The sets of constants, used to take
the results shown in Table 1, are given bellow.
Set (A)
|α| = 01.1001011000001 |γ| = 00.111000100000011
|β| = 00.00001101100100000001 |δ| = 00.0111000110001
|Κ| = 01.0011101011101 |1/Κ| = 00.1101000000011001

Set (B)
|α| = 01.1001011 |γ| = 00.11100010000001
|β| = 00.000011011001 |δ| = 00.011100011
|Κ| = 01.0011101011 |1/Κ| = 00.1101000000011

The following results for the PSNR, achieved by different
quantizations of the constants, are obtained using two test
images: lena (512x512x8) and bridge (512x512x8). The
forward filter is a hardware implementation using the
constants above. For the inverse filtering, two type of
filters are used. A software, double precision, filter with
no quantization error and a hardware implementation,
using the quantized constants.

 Levels
Inverse Filter

type Image 1 2 3 4 5 6

lena ∞ ∞ ∞ ∞ ∞ 81 dB software
(double prec.) bridge ∞ ∞ ∞ 65 dB 58 dB 50 dB

lena ∞ ∞ ∞ ∞ 73 dB 66 dB Hardware
impl. bridge ∞ ∞ ∞ ∞ 71 dB 53 dB

Table 1a. PSNR measurements for set of constants (A).

 Levels
Inverse Filter

type Image 1 2 3 4 5 6

lena ∞ ∞ ∞ ∞ ∞ 82 dB software
(double prec.) bridge ∞ ∞ ∞ 65 dB 58 dB 50 dB

lena ∞ ∞ ∞ 53 dB 49 dB 48 dB Hardware
impl. bridge ∞ ∞ ∞ 50 dB 49 dB 47 dB

Table 1b. PSNR measurements for set of constants (B).

2. ARCHITECTURES FOR THE LIFTING-
SCHEME PROCESSING UNITS.

In the following, the basic processing elements of the
lifting scheme will be examined.

(i) Multiplier – based.
A straightforward implementation for the lifting scheme
uses the processing unit shown in Fig. 1 with a multiplier
capable to handle signed numbers and two adders for
each processing unit. Providing the appropriate constant
to the multiplier, implements the desired lifting step. The
width of the multipliers is determined by the accuracy of
the constants and the data path bit-width.

The drawback of the above implementation is that the
multipliers occupy a great amount of area and restrict the
throughput of the processing unit.

(ii) Optimized, using shift-add operations.

Using shift-add operations to replace the multiplications
with constants optimizes the above implementation. An
improved processing block can be obtained that way, but
a separate block is needed to perform the multiplication

with each constant. The architecture of the optimized
processing unit is shown in Fig. 2. A comparison can be
made by examining the results given at the end of this
section, in Table 2.

Two different architectures are given, depending on
the constant's sign. The multiplication with a positive
constant is translated in summing shifted versions of the
input. When the positive constant is in FXP format, a
term corresponds to each bit with value ‘1’.

For example, multiplication with the constant 2.25,
which is represented in FXP format as 0010.0100
equivalents in adding two terms. The first term is the
input shifted arithmetically left for one position and the
second term is the input shifted arithmetically right two
positions.

When the constant is negative, it is represented as
positive and the sign of the input is complemented. When
the input is in 2’s complement FXP format, this is done
by inverting the input and adding one least significant bit.

+

SAL SAL SAR SAR SAR ...

Adder Tree

In -1 In +1In 0

...

+

SAL SAL SAR SAR SAR... ...

Adder Tree

In -1 In +1In 0

Complement

 (a) (b)

 Fig. 2 Basic processing block for:
 (a) positive constants.
 (b) negative constants.

The following experimental results, show the area – delay
characteristics for each processing unit, for the forward
filtering. The results for the inverse filter processing units
do not differ significantly and aren’t given.

 Processing Unit

Forw. a b c d k 1/k

Set
(A)

100
CLBs

17
ns

90
CLBs

18
ns

72
CLBs

13
ns

73
CLBs

13
ns

106
CLBs

15
ns

49
CLBs

9
ns

Set
(B)

94
CLBs

17
ns

86
CLBs

17
ns

69
CLBs

13
ns

67
CLBs

13
ns

87
CLBs

13
ns

44
CLBs

9
ns

Table 2 Area – delay results for the shift - add
architecture.

III. CONVOLUTIONAL FILTERS

The convolutional-based DWT uses two FIR filters, one

for calculating the low-pass coefficients and one for the
high-pass coefficients. The following sets of coefficients
implement a filtering unit equivalent – interchangeable
with the lifting scheme filtering units described above.
Forward filters
Y2n = cl0⋅X2n + Y2n+1 = ch0⋅X2n+1 +
 cl1⋅(X2n-1+X2n+1) + ch1⋅(X2n+X2n+2) +
 cl2⋅(X2n-2+X2n+2) + ch2⋅(X2n-1+X2n+3) +
 cl3⋅(X2n-3+X2n+3) + ch3⋅(X2n-2+X2n+4)
 cl4⋅(X2n-4+X2n+4)

cl0 = 0.602 949 018 236 ch0 = -1.115 087 052 456
cl1 = 0.266 864 118 442 ch1 = 0.591 271 763 114
cl2 = -0.078 223 266 528 ch2 = 0.057 543 526 228
cl3 = -0.016 864 118 442 ch3 = -0.091 271 763 114
cl4 = 0.026 748 757 410

Inverse filters
X2n = cl0⋅Y2n + X2n+1 = ch0⋅Y2n+1 +
 cl1⋅(Y2n-1+Y2n+1) + ch1⋅(Y2n+Y2n+2) +
 cl2⋅(Y2n-2+Y2n+2) + ch2⋅(Y2n-1+Y2n+3) +
 cl3⋅(Y2n-3+Y2n+3) + ch3⋅(Y2n-2+Y2n+4) +
 ch4⋅(Y2n-3+Y2n+5)

cl0 = 1.115 087 052 456 ch0 = -0.602 949 018 236
cl1 = 0.266 864 118 442 ch1 = 0.591 271 763 114
cl2 = -0.057 543 526 228 ch2 = 0.078 223 266 528
cl3 = -0.016 864 118 442 ch3 = -0.091 271 763 114
 ch4 = -0.026 748 757 410

1. QUANTIZATION OF COEFFICIENTS.

As stated before, the data path width is 24 bits. Each
coefficient of the filter is quantized with accuracy
proportional to its value, because larger coefficients
affect the filter output more than smaller ones. Two
coefficient sets with different accuracies are given next.

Forward Set (A)
cl0 = 00.1001101001011 ch0 = 10.111000101001
cl1 = 00.010001000101 ch1 = 00.100101110101
cl2 = 11.111011 ch2 = 00.000011101011
cl3 = 11.111110111011 ch3 = 11.111010001011
cl4 = 00.0000011011011
Inverse Set (A)
cl0 = 01.00011101011 ch0 = 11.011001011011
cl1 = 00.010001000101 ch1 = 00.1001011101011
cl2 = 11.111100010101 ch2 = 00.000101
cl3 = 11.111110111011 ch3 = 11.1110100010101
 ch4 = 11.111110010011
Forward Set (B)
cl0 = 00.100110100101 ch0 = 10.111000101001
cl1 = 00.010001000101 ch1 = 00.100101110101
cl2 = 11.111011 ch2 = 00.000011101011
cl3 = 11.1111101111 ch3 = 11.111010001011
cl4 = 00.000001101101

Inverse Set (B)
cl0 = 01.000111010111 ch0 = 11.011001011011
cl1 = 00.010001000101 ch1 = 00.100101110101
cl2 = 11.111100010101 ch2 = 00.000101

cl3 = 11.1111101111 ch3 = 11.111010001011
 ch4 = 11.111110010011

In the following tables, the PSNR values achieved for the
two different coefficient sets are given. The test image
bridge (512x512x8) was used.

2. THE FIR FILTER IMPLEMENTATION.

(i) Multiplier – based.

A straightforward architecture is the one shown in Fig. 3
bellow. For this implementation, nine multipliers and
fourteen adders are needed.

+ + + +

×××× ×××× ×××× ×××× ××××

Adder Tree

X2n

cl1 cl2 cl3 cl4

X2n-1

X2n+1

X2n-2 X2n-3 X2n-4

X2n+2 X2n+3 X2n+4

Y2n

+ + +

×××× ×××× ×××× ××××

X2n+1

ch0 ch1 ch2 ch3

X2n

X2n+2

X2n-1 X2n-2

X2n+3

Y2n+1

Adder Tree

X2n+4

cl0

Fig. 3 Architecture of the forward convolutional filters

with multipliers.

(ii) Optimized, adder – based.

Using the technique described before in the lifting
scheme approach, the multipliers are reduced to shift –
add operations. This leads to a more compact and slightly
faster implementation than the previous one, which used
multipliers. The block diagram for the low pass filter is
shown in Fig. 4. The high pass filter is similar.

The area and delay results for the two architectures
and for the coefficient sets given above are presented in
Table 4. The results were taken by implementing on a
Xilinx XCV300-5 FPGA.

+ + + +

Adder Tree

X2n

X2n-1

X2n+1

X2n-2 X2n-3 X2n-4

X2n+2 X2n+3 X2n+4

Y2n

→ → → ... → → → ... → → → ... → → → ... → → → ...

Fig. 4 Architecture of the forward L.P. convolutional

filter.

Architecture Coef. Set Filter
type

Area
(CLB Slices)

Delay
(ns)

Forw 1801 24.4 Set (A)
Inv 1787 24.4

Forw 1745 24.2
Multipliers

Set (B)
Inv 1745 24.3

Forw 634 19.3 Set (A)
Inv 657 19.7

Forw 604 18.7
Shift -Add
operations

Set (B)
Inv 620 20.6

Table 4 Comparative results between the two
architectures.

IV. CONCLUSIONS
By comparing the results for the optimized architectures
of set (B) from Table 4 with those of set (A) from Table
2, which achieve similar PSNR results, we observe that
the six processing units for the lifting scheme occupy
about 20% less area than the convolutional filters. In
lifting scheme, each processing unit depends on results
from another processing unit, so they cannot operate in
parallel, unless a form of pipelining is used. The total
delay for one filtering operation with lifting scheme is
larger than the convolutional filter’s delay. It seems that
for hardware implementation the optimized convolutional
approach is faster, with about the same area than the
lifting scheme approach, and requiring much simpler
control logic.

REFERENCES
[1] M. Antonini, et al. , "Image Coding Using Wavelet

Transform" IEEE Transactions on Image Processing, Vol.
1, No. 2, pp. 205-220, April 1992.

[2] ISO/IEC FCD15444-1: 2000 V1.0, "JPEG 2000 Image
Coding System ", official release expected at Mar. 2001

[3] ISO/IEC JTC1/SC29/WG11, FCD 14496-1, "Coding of
Moving Pictures and Audio", May 1998.

[4] W. Sweldens, "The lifting scheme: A construction of
second generation wavelets", in SIAM J. Math. Anal., no
2, Vol. 29, pp. 511-546, 1997.

 Levels
Inverse Filter type 1 2 3 4 5 6
software (double

precision) ∞ ∞ ∞ ∞ ∞ 73 dB

Hardware
implementation ∞ ∞ ∞ 93 dB 79 dB 68 dB

Table 3a. PSNR for quantized set of coefficients (A).

 Levels
Inverse Filter type 1 2 3 4 5 6
software (double

precision) ∞ ∞ 99 dB 69 dB 62 dB 58 dB

Hardware
implementation ∞ 102dB 67 dB 57 dB 54 dB 52 dB

Table 3b. PSNR for quantized set of coefficients (B).

	QUANTIZATION EFFECT ON VLSI IMPLEMENTATIONS FOR THE 9/7 DWT FILTERS.
	INTRODUCTION
	THE LIFTING SCHEME APPROACH
	QUANTIZATION OF CONSTANTS.
	ARCHITECTURES FOR THE LIFTING-SCHEME PROCESSING UNITS.
	Multiplier – based.
	Optimized, using shift-add operations.

	CONVOLUTIONAL FILTERS
	QUANTIZATION OF COEFFICIENTS.
	THE FIR FILTER IMPLEMENTATION.
	Multiplier – based.
	Optimized, adder – based.

	CONCLUSIONS

