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Abstract:   In this paper, two basic approaches for 
implementing the 9/7 Filtering Unit, used in the 
Discrete Wavelet Transform, are addressed. The first is 
the lifting scheme approach and the second is the 
conventional, convolutional filter approach. Two 
architectures are examined for each approach, a simple 
– straightforward one and an optimized one, 
substituting the multipliers used for scaling with shift – 
add operations. The quantization of the constants used 
in the calculations is thoroughly explored and the 
selection of the data-path bit-width is addressed. 
Experimental results based on hardware 
implementation, for several quantizations and for the 
different hardware architectures of the 9/7 filtering 
units are given.  

I. INTRODUCTION 
Many image and video compression techniques are based 
on the Discrete Wavelet Transform (DWT). A great 
number of analysis / synthesis filters for the DWT have 
been proposed in the past. However, Antonini's 9/7 filter 
[1] is the most popular one, since it combines good 
performance and rational filter length. It is stressed here 
that the 9/7 filter is a default filter of the upcoming 
JPEG2000 [2] standards and included in the MPEG4 [3] 
standard. 

In this paper, aspects related to filter coefficients’ 
quantization and hardware architecture of the filtering 
unit are exhaustively explored. Specifically, Section II 
focuses on lifting scheme-based implementation while 
Section III examines the conventional convolutional 
approach. For each case, the effect of filter coefficients’ 
quantization in performance, in terms of Peak Signal to 
Noise Ratio (PSNR), is presented. Furthermore for both 
cases, the straightforward (multiplier-based) and a speed 
– area optimized implementation are compared. 

Experimental results concerning the PSNR have been 
acquired by running a row – column implementation of 
the DWT in software, collaborating with a hardware 

implementation of the filter under test. The filter 
alternatives are mapped on an FPGA, using a prototyping 
platform hosting a Xilinx Virtex device. The results are 
general and independent from any normalization policy. 

II. THE LIFTING SCHEME APPROACH 
The lifting scheme based DWT has been included in the 
upcoming JPEG2000 standard because it reduces the 
arithmetic complexity [4] of the conventional, 
convolution based DWT, up to a factor of two.  

The lifting-based DWT implementation of filtering as 
described in [2] is given bellow. Applying the following 
steps to the entire input performs the transformation. The 
input is extended before and after the first and last 
coefficient, i0 is the index of the first coefficient of the 
input and i1 is the index of the coefficient immediately 
following the last coefficient. 

Forward transformation 
Y2n+1 = X2n+1 + α × (X2n + X2n+2) i0-3 ≤ 2n+1 < i1+3 (S1) 
Y2n = X2n    + β × (Y2n-1 + Y2n+1) i0-2 ≤ 2n < i1+2  (S2) 
Y2n+1 = Y2n+1 + γ × (Y2n + Y2n+2) i0-1 ≤ 2n+1 < i1+1 (S3) 
Y2n = Y2n    + δ × (Y2n-1 + Y2n+1) i0 ≤ 2n < i1  (S4) 
Y2n+1 = -Κ × Y2n+1 i0 ≤ 2n+1 < i1  (S5) 
Y2n = Y2n / Κ  i0 ≤ 2n < i1  (S6) 

Inverse transformation 
X2n = Κ × Y2n i0-3 ≤ 2n < i1+3  (S1) 
X2n+1 = - Y2n+1 / Κ i0-2 ≤ 2n+1 < i1+2 (S2) 
X2n = X2n - δ × (X2n-1 + X2n+1) i0-3 ≤ 2n < i1+3  (S3) 
X2n+1 = X2n+1 - γ × (X2n + X2n+2) i0-2 ≤ 2n+1 < i1+2 (S4) 
X2n = X2n - β × (X2n-1 + X2n+1) i0-1 ≤ 2n < i1+1  (S5) 
X2n+1 = X2n+1 - α × (X2n + X2n+2) i0-1 ≤ 2n+1 < i1  (S6) 

Where the values of the constants are: 
α = -1.586134342  γ = 0.882911075 
β = -0.052980118  δ = 0.443506852 
Κ = 1.230174105 

Each step represents a basic processing element. The 
steps S1 → S4 of the forward transformation and the last 
four steps, S3 → S6 of the inverse transformation, have 
the same structure and can be implemented by a 
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processing block like the one displayed in Fig. 1 The rest 
steps are multiplications with constants (scaling steps).  

+

+

××××Constant

In -1 In 0 In +1

 
Fig.1   Basic processing block of the lifting scheme. 

1. QUANTIZATION OF CONSTANTS. 

The 9/7 filter is originally based on a floating point data 
representation. Since the scope here is hardware 
implementation of the 9/7 filter, we focus on the 
equivalent filter that uses fixed point (FXP) data 
representation. This is due to the fact that floating-point 
data-path operators are more complex, occupy more area 
and are slower than their FXP counterparts. The aim of 
this subsection is to define the effect of quantization of 
the FXP representation of samples and filters constants 
on image quality, in terms of PSNR, and filter 
implementation, in terms of speed and area. 

Coding images using the DWT, requires a relatively 
small number of decomposition levels, e.g. for a 512×512 
picture, 5 or 6 levels are enough. Thus the accuracy of the 
calculations may be decreased up to the point that the 
PSNR of the transformed and recovered image, ranges 
above a certain limit. This way, the bit-width of the filter 
data-path can be reduced, resulting to a decrease in 
memory requirements and smaller multipliers. The 
accuracy of the constants used in the calculations, can 
also be decreased, allowing also for the use of smaller 
multipliers. 

After running the DWT using several gray-scale 
images with a color depth of 8 bits/pixel (the same color 
depth as that of the luminance component), several sizes 
and up to nine layers of transformation, it has been 
observed that a dynamic range of –2048 to 2047 is safely 
adequate. For a 2’s complement FXP representation, this 
translates to 12 bits for the integer part. For the fractional 
part, 12 bits provide the accuracy to obtain a PSNR over 
50dB for six levels of decomposition. So, a total of 24 
bits is used for the data path. 

The constants α, β, γ, δ, Κ, 1/Κ  are quantized taking in 
account the number of bits with value ‘1’, in their 
positive representation. That’s because each ‘1’ yields a 
term to be summed. The sets of constants, used to take 
the results shown in Table 1, are given bellow. 
Set (A) 
|α| = 01.1001011000001 |γ| = 00.111000100000011 
|β| = 00.00001101100100000001 |δ| = 00.0111000110001 
|Κ| = 01.0011101011101 |1/Κ| = 00.1101000000011001 

Set (B) 
|α| = 01.1001011 |γ| = 00.11100010000001 
|β| = 00.000011011001 |δ| = 00.011100011 
|Κ| = 01.0011101011 |1/Κ| = 00.1101000000011 

The following results for the PSNR, achieved by different 
quantizations of the constants, are obtained using two test 
images: lena (512x512x8) and bridge (512x512x8). The 
forward filter is a hardware implementation using the 
constants above. For the inverse filtering, two type of 
filters are used. A software, double precision, filter with 
no quantization error and a hardware implementation, 
using the quantized constants. 

  Levels 
Inverse Filter 

type Image 1 2 3 4 5 6 

lena ∞ ∞ ∞ ∞  ∞  81 dB software 
(double prec.) bridge ∞ ∞ ∞ 65 dB 58 dB 50 dB 

lena ∞ ∞ ∞ ∞  73 dB 66 dB Hardware 
impl. bridge ∞ ∞ ∞ ∞  71 dB 53 dB 

Table 1a.    PSNR measurements for set of constants (A). 
 

  Levels 
Inverse Filter 

type Image 1 2 3 4 5 6 

lena ∞ ∞ ∞ ∞  ∞  82 dB software 
(double prec.) bridge ∞ ∞ ∞ 65 dB 58 dB 50 dB 

lena ∞ ∞ ∞ 53 dB 49 dB 48 dB Hardware 
impl. bridge ∞ ∞ ∞ 50 dB 49 dB 47 dB 

Table 1b.    PSNR measurements for set of constants (B). 

2. ARCHITECTURES FOR THE LIFTING-
SCHEME PROCESSING UNITS. 

In the following, the basic processing elements of the 
lifting scheme will be examined. 

(i) Multiplier – based. 
A straightforward implementation for the lifting scheme 
uses the processing unit shown in Fig. 1 with a multiplier 
capable to handle signed numbers and two adders for 
each processing unit. Providing the appropriate constant 
to the multiplier, implements the desired lifting step. The 
width of the multipliers is determined by the accuracy of 
the constants and the data path bit-width. 

The drawback of the above implementation is that the 
multipliers occupy a great amount of area and restrict the 
throughput of the processing unit. 

(ii) Optimized, using shift-add operations. 

Using shift-add operations to replace the multiplications 
with constants optimizes the above implementation. An 
improved processing block can be obtained that way, but 
a separate block is needed to perform the multiplication 



with each constant. The architecture of the optimized 
processing unit is shown in Fig. 2. A comparison can be 
made by examining the results given at the end of this 
section, in Table 2. 

Two different architectures are given, depending on 
the constant's sign. The multiplication with a positive 
constant is translated in summing shifted versions of the 
input. When the positive constant is in FXP format, a 
term corresponds to each bit with value  ‘1’. 

For example, multiplication with the constant 2.25, 
which is represented in FXP format as 0010.0100 
equivalents in adding two terms. The first term is the 
input shifted arithmetically left for one position and the 
second term is the input shifted arithmetically right two 
positions. 

When the constant is negative, it is represented as 
positive and the sign of the input is complemented. When 
the input is in 2’s complement FXP format, this is done 
by inverting the input and adding one least significant bit.   
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 Fig. 2   Basic processing block for: 
 (a)    positive constants. 
 (b)   negative constants. 

The following experimental results, show the area – delay 
characteristics for each processing unit, for the forward 
filtering. The results for the inverse filter processing units 
do not differ significantly and aren’t given. 

 Processing Unit 

Forw. a b c d k 1/k 

Set 
(A) 

100 
CLBs 

17 
ns 

90 
CLBs 

18 
ns 

72 
CLBs 

13 
ns 

73 
CLBs 

13 
ns 

106 
CLBs 

15 
ns 

49 
CLBs 

9 
ns 

Set 
(B) 

94 
CLBs 

17 
ns 

86 
CLBs 

17 
ns 

69 
CLBs 

13 
ns 

67 
CLBs 

13 
ns 

87 
CLBs 

13 
ns 

44 
CLBs 

9 
ns 

Table 2   Area – delay results for the shift - add 
architecture. 

III. CONVOLUTIONAL FILTERS  

The convolutional-based DWT uses two FIR filters, one 

for calculating the low-pass coefficients and one for the 
high-pass coefficients. The following sets of coefficients 
implement a filtering unit equivalent – interchangeable 
with the lifting scheme filtering units described above.  
Forward filters 
Y2n = cl0⋅X2n + Y2n+1 = ch0⋅X2n+1 +  
  cl1⋅(X2n-1+X2n+1) +   ch1⋅(X2n+X2n+2) + 
  cl2⋅(X2n-2+X2n+2) +   ch2⋅(X2n-1+X2n+3) + 
  cl3⋅(X2n-3+X2n+3) +   ch3⋅(X2n-2+X2n+4)
  cl4⋅(X2n-4+X2n+4) 

cl0 =  0.602 949 018 236 ch0 =  -1.115 087 052 456 
cl1 =  0.266 864 118 442 ch1 =   0.591 271 763 114 
cl2 = -0.078 223 266 528 ch2 =   0.057 543 526 228 
cl3 = -0.016 864 118 442 ch3 =  -0.091 271 763 114 
cl4 =  0.026 748 757 410 

Inverse filters 
X2n = cl0⋅Y2n + X2n+1 = ch0⋅Y2n+1 +  
  cl1⋅(Y2n-1+Y2n+1) +   ch1⋅(Y2n+Y2n+2) + 
  cl2⋅(Y2n-2+Y2n+2) +   ch2⋅(Y2n-1+Y2n+3) + 
  cl3⋅(Y2n-3+Y2n+3) +   ch3⋅(Y2n-2+Y2n+4) + 
      ch4⋅(Y2n-3+Y2n+5) 

cl0 =  1.115 087 052 456 ch0 =  -0.602 949 018 236 
cl1 =  0.266 864 118 442 ch1 =   0.591 271 763 114 
cl2 = -0.057 543 526 228 ch2 =   0.078 223 266 528  
cl3 = -0.016 864 118 442 ch3 =  -0.091 271 763 114 
    ch4 =  -0.026 748 757 410 

1. QUANTIZATION OF COEFFICIENTS. 

As stated before, the data path width is 24 bits. Each 
coefficient of the filter is quantized with accuracy 
proportional to its value, because larger coefficients 
affect the filter output more than smaller ones. Two 
coefficient sets with different accuracies are given next. 

Forward Set (A) 
cl0 = 00.1001101001011 ch0 = 10.111000101001 
cl1 = 00.010001000101 ch1 = 00.100101110101 
cl2 = 11.111011 ch2 = 00.000011101011 
cl3 = 11.111110111011 ch3 = 11.111010001011 
cl4 = 00.0000011011011 
Inverse Set (A) 
cl0 = 01.00011101011 ch0 = 11.011001011011 
cl1 = 00.010001000101 ch1 = 00.1001011101011 
cl2 = 11.111100010101 ch2 = 00.000101 
cl3 = 11.111110111011 ch3 = 11.1110100010101 
 ch4 = 11.111110010011 
Forward Set (B) 
cl0 = 00.100110100101 ch0 = 10.111000101001 
cl1 = 00.010001000101 ch1 = 00.100101110101 
cl2 = 11.111011 ch2 = 00.000011101011 
cl3 = 11.1111101111 ch3 = 11.111010001011 
cl4 = 00.000001101101 

Inverse Set (B) 
cl0 = 01.000111010111 ch0 = 11.011001011011 
cl1 = 00.010001000101 ch1 = 00.100101110101 
cl2 = 11.111100010101 ch2 = 00.000101 



cl3 = 11.1111101111 ch3 = 11.111010001011 
 ch4 = 11.111110010011 

In the following tables, the PSNR values achieved for the 
two different coefficient sets are given. The test image 
bridge (512x512x8) was used.  

 

 

2. THE FIR FILTER IMPLEMENTATION. 

(i) Multiplier – based. 

A straightforward architecture is the one shown in Fig. 3 
bellow. For this implementation, nine multipliers and 
fourteen adders are needed.  
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Fig. 3  Architecture of the forward convolutional filters 

with multipliers. 

(ii) Optimized, adder – based. 

Using the technique described before in the lifting 
scheme approach, the multipliers are reduced to shift – 
add operations. This leads to a more compact and slightly 
faster implementation than the previous one, which used 
multipliers. The block diagram for the low pass filter is 
shown in Fig. 4. The high pass filter is similar. 

The area and delay results for the two architectures 
and for the coefficient sets given above are presented in 
Table 4. The results were taken by implementing on a 
Xilinx XCV300-5 FPGA. 
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Fig. 4  Architecture of the forward L.P. convolutional 

filter. 
 

Architecture Coef. Set Filter 
type 

Area        
(CLB Slices) 

Delay       
(ns) 

Forw 1801 24.4 Set (A) 
Inv 1787 24.4 

Forw 1745 24.2 
Multipliers 

Set (B) 
Inv 1745 24.3 

Forw 634 19.3 Set (A) 
Inv 657 19.7 

Forw 604 18.7 
Shift -Add 
operations 

Set (B) 
Inv 620 20.6 

Table 4   Comparative results between the two 
architectures. 

IV. CONCLUSIONS 
By comparing the results for the optimized architectures 
of set (B) from Table 4 with those of set (A) from Table 
2, which achieve similar PSNR results, we observe that 
the six processing units for the lifting scheme occupy 
about 20% less area than the convolutional filters. In 
lifting scheme, each processing unit depends on results 
from another processing unit, so they cannot operate in 
parallel, unless a form of pipelining is used. The total 
delay for one filtering operation with lifting scheme is 
larger than the convolutional filter’s delay. It seems that 
for hardware implementation the optimized convolutional 
approach is faster, with about the same area than the 
lifting scheme approach, and requiring much simpler 
control logic. 
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 Levels 
Inverse Filter type 1 2 3 4 5 6 
software (double 

precision) ∞ ∞ ∞ ∞ ∞ 73 dB 

Hardware 
implementation ∞ ∞ ∞ 93 dB 79 dB  68 dB  

Table 3a.    PSNR for quantized set of coefficients (A). 

 Levels 
Inverse Filter type 1 2 3 4 5 6 
software (double 

precision) ∞ ∞ 99 dB 69 dB 62 dB 58 dB 

Hardware 
implementation ∞ 102dB 67 dB  57 dB 54 dB  52 dB  

Table 3b.    PSNR for quantized set of coefficients (B). 
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