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Abstract—In practice large antenna spacings are needed
to achieve high capacity gains in multiple-input multiple-
output (MIMO) wireless systems. The use of dual-polarized
antennas is a promising cost effective alternative where
two spatially separated antennas can be replaced by a
single antenna element employing orthogonal polarizations.
This paper investigates the performance of spatial multi-
plezing in MIMO wireless systems with dual-polarized an-
tennas. We compute estimates of the symbol error rate as
a function of cross-polarization discrimination (XPD) and
spatial fading correlations. Using these estimates, we show
that dual-polarized antennas can significantly improve the
performance of spatial multiplexing systems. It is demon-
strated that improvements in terms of symbol error rate of
up to an order of magnitude are possible. We furthermore
find that in general for a given SNR there is an optimum
XPD for which the symbol error rate is minimum. Finally,
we present simulation results and we show that our esti-
mates closely match the numerical results.

1. INTRODUCTION AND OUTLINE

The use of multiple antennas at both ends of a wireless
link has recently been shown to have the potential of drasti-
cally increasing capacity through a technique called spatial
multiplezing [1]-[5]. This capacity gain depends strongly on
transmit and receive antenna spacing. In practice anten-
na spacings of several wavelengths are required in order to
achieve significant multiplexing gain. Unfortunately, large
antenna spacing increases both size and cost of base stations
and renders the use of multiple antennas in handsets very
difficult. The use of dual-polarized antennas is a promis-
ing cost effective alternative where two spatially separated
antennas can be replaced by a single antenna element em-
ploying orthogonal polarizations.

Contributions. In this paper, we investigate the per-
formance of uncoded spatial multiplexing in systems em-
ploying dual-polarized antennas. Although our techniques
are generally applicable, for the sake of simplicity, we con-
sider a link with one dual-polarized transmit and one dual-
polarized receive antenna. Our contributions are as follows.
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e We introduce a channel model for a dual-polarized
single-input single-output link taking into account
spatial fading correlations and cross-polarization dis-
crimination (XPD).

e We propose a method for computing estimates of the
uncoded symbol error rate of spatial multiplexing in
the presence of polarization diversity.

o We identify the propagation conditions where the use
of polarization diversity is beneficial from an error-
probability point of view, and we show that improve-
ments in terms of symbol error rate of up to an order
of magnitude are possible.

o We demonstrate that our symbol error estimates
closely match the simulation results. Our method
can therefore be used to predict performance trends
analytically and helps avoiding time-consuming com-
puter simulations.

Organization of the paper. The rest of this paper is
organized as follows. Section 2 introduces the channel mod-
el for a dual-polarized single-input single-output link and
states our assumptions. In Section 3, we derive estimates
for the uncoded symbol error rate of spatial multiplexing
as a function of spatial fading correlations, XPD, and SNR.
Section 4 provides simulation results and demonstrates that
our estimates closely match the simulation results. Finally,
Section 5 contains our conclusions.

2. THE CHANNEL MODEL

We consider a system with one dual-polarized transmit
and one dual-polarized receive antenna. The channel is as-
sumed to be flat over the frequency-band of interest. The
input-output relation is therefore given by’

r=vVE,Hx +n, (1)

where x = [zo z1]7 is the 2 x 1 transmit signal vector
whose elements are taken from a finite (complex) constella-
tion chosen such that the average energy of the constellation
elements is 1, r = [ro 17 is the 2 x 1 receive signal vector,
n is complex-valued gaussian noise with £{nn”} = ¢215,
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IThe superscripts 7 and ¥ stand for transpose and conjugate
transpose, respectively.




is the channel transfer matrix which is also the polarization
matrix, and v/E; is a normalization factor. The polariza-
tion matrix describes the degree of suppression of individual
co- and cross-polarized components, cross correlation, and
cross coupling of energy from one polarization state to the
other polarization state. In practice, the following polar-
izations are generally considered: horizontol, vertical, and
+45° slanted polarization. In this paper, we assume that
the transmitter and the receiver employ the same polar-
izations, i.e., both of them employ horizontal and vertical
polarization for example. The signals zo and 1 are trans-
mitted on the two different polarizations, and r¢ and r; are
the signals received on the corresponding polarizations. We
emphasize that although we are dealing with one physical
transmit and one physical receive antenna, the underlying
channel is a 2—input 2—output channel, since each polar-
ization mode is treated as an independent physical channel.
We assume that the channel is purely Rayleigh fading, i.e.,
the matrix H consists of (in general correlated) complex
gaussian random variables with zero mean. The more gen-
eral case taking into account a line-of-sight component is
treated in [6]. The correlation between the elements of the
matrix H and the variances of the elements depend on the
propagation conditions and the choice of polarizations, re-
spectively.
Throughout the paper, we assume®

E{lho,o’} = E{|h1al’} = 1

E{lhoa |’} = E{|h10l’} = o,
where 0 < a < 1 depends on the XPD. Good XPD yields
small o and vice versa. The case @ = 1 can also be in-
terpreted as having two physical antennas on each side of

the link employing the same polarization. We furthermore
define the following correlation coefficients®

E{hoohi 1} E{h1,0hi.}
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For the sake of simplicity, throughout the paper, we as-
sume that E{ho,0hi,1} = E{h1,0ho,1} = 0. Measured values
of XPD and correlation coefficients have been reported for
example in [7]-[9].

3. DERIVATION OF SYMBOL ERROR RATE

In this section, we first discuss the impact of polariza-
tion diversity on spatial multiplexing and then compute an
estimate of the symbol error rate.

3.1. Impact of Polarization Diversity

Spatial multiplezing [1]-[5] has the potential to dramat-
ically increase the capacity of wireless radio links with no
additional power or bandwidth consumption. The basic
idea is that if scattering in the multi-antenna channel is rich
enough independent parallel spatial data pipes are created
within the same bandwidth, which ideally yields a linear (in
the number of antennas) capacity increase. Traditionally,

2¢ stands for the expectation operator.
3The superscript * stands for complex conjugate.

the ability to perform spatial multiplexing has been related
to a rich enough scattering environment. In the present case
virtual multiple antennas are created by employing differ-
ent polarizations and the MIMO channel matrix is replaced
by the polarization matrix. It is therefore not clear a pri-
ori how spatial multiplexing will perform in the presence
of polarization diversity and how the exact values of XPD
and fading correlations will influence the performance. We
can, however, quantitatively establish the benefit of polar-
ization diversity. It is well known that the multiplexing gain
is maximized if the condition number of the channel matrix
is 1. Now, it is intuitively clear that for small a the individ-
ual realizations of H tend to have lower condition number.
In fact, in the limiting case @ = 0 (i.e. perfect XPD) every
realization of H yields orthogonal columns and hence high
multiplexing gain can be expected.

3.2. Error Probability

Throughout the paper, we assume that the channel is
unknown in the transmitter, perfectly known in the receiver,
and that maximum-likelihood (ML) decoding is performed.
The receiver computes the ML estimate according to

% = arg min||r — VEH x|’
x

where the minimization is performed over the set of all pos-
sible codevectors.

Let ¢ and e be two different codevectors of size 2 x 1
and assume that ¢ was transmitted. For a given channel
realization H, the probability that the receiver decides er-
roneously in favor of the vector e is given by [10]

= d?(c,e|H>> BN

P(c — e|H) =Q<

where

d(c,e|H) = ||H(c — e)||”.
Upon defining y = H(c — ) we get d*(c,e|H) = ||y||*> and
hence using the Chernoff bound Q(z) < e ="/2 it follows
from (2) that

- Z5Iyl?
P(c - eH) < e *n . (3)

Since H was assumed to be gaussian it follows that the
2 X 1 vector y is gaussian as well. The average over all
channel realizations of the right-hand side in (3) is fully
characterized by the eigenvalues of the 2 x 2 covariance
matrix of y [11] defined as C, = £{y y”}. In particular,
denoting the eigenvalues of C, as A;(C,), we get
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where P(c — e) = Eg{P(c — e|H)} is the pairwise error
probability averaged over all channel realizations. Straight-
forward manipulations reveal that* C, =

lco — eo|” + aler —e1|” + 2R{(co — eo)(c1 — e1)*t\/a}
r*va(|co — eol® + |e1 — e1]?)

rv/a(|co — eol® + |e1 — e1]?)
aleo —eol® + |e1 — e1]? + 2R{(co — eo)(c1 —e1)*tv/a} |-
The eigenvalues of C, are given by

4R{a} stands for the real part of a.



N a+d=x+/(a—d)?+4bc

1,2 =

2
with
a = Jco—eol’ +aje —ei]?
+ 2R{(co — eo)(c1 — ex) "t}
b = rva(lco—eo|” +c1 —ei1]?)
c = r"Va(lco —eo|> + |c1 —ei]?)
d = aco —eo|2+|cl —'31|2

2R{(co — eo)(c1 — e1)"t/a}.

If no polarization diversity is used (i.e. &« = 1) and the
channel matrix is i.i.d., we have A\; = X2 = (Jeo — eo|> +
|e1 — e1|?). In this case the error rate behavior is governed
by error events where only one out of the two symbols is
in error, say (co — eo) # 0 with |co — eo|®> = d,;,, Where
dmin denotes the minimum distance of the scalar constella-
tion used. Clearly, the error rate will decay for increasing
dmin- In the general case, where a < 1 and the individual
entries in H are correlated the error events governing the
performance of spatial multiplexing depend on the channel
geometry induced by the correlation coefficients and the
value of @. In order to avoid having to find those error
events for a particular channel geometry, we average over
all possible error events including a weighting which takes
into account that different vector error events cause a dif-
ferent number of scalar symbol error events. In particular,
we want to study the influence of XPD on the error rate of
spatial multiplexing systems. It is therefore crucial to reveal
how the error probability behaves as a function of XPD for
a given SNR and given ¢t and r. We assume that 4-PSK is
employed. This implies that there are 240 error events. The
individual scalar error events (c; — e;) can take values from
the set {0, :bdmm,:lzjdmin,:bdmm(l + j),:l:dmin(l — ])}
Now, with the relative frequency of an error event ¢; where
C;, —€; = [(Co,i - 60,7;) (Cl,i - 61,7;)]T given by

w(co,i —eo,i)wlci —ery)

Ne, =

i 240
with
4, z=0
w(x) = 2, T = :Edmin, Zl:,]dmm s

we estimate the average symbol error rate as
P =3 "n,Pe)s(e). (5)
€

Here, P(El) is (4) evaluated for [(CO,i — 60,7;) (Cl,i — el,i)]T
and
s(ei) = { 2, (co,i —eoi) # 0, (c1,6 —e1s) #0

- 1, (00,7; —eo,i) =0 or (01,7; —61,7;) = 0.

In the next section, P is shown to reveal all the relevant
trends and a close match between the exact symbol error
rate and P is found.

We note that (4) can be used to study the impact of ¢, r
and a on P analytically. For example, it follows immediate-
ly from (4) and (5) that for t = r = 0 the quantity P will be
minimum for a =1, i.e., for the case where no polarization
diversity is employed. Indeed, we will find in the next sec-
tion that polarization diversity improves the multiplexing
gain only in the presence of high correlations.

4. SIMULATION RESULTS

In this section, we provide simulation results demon-
strating the performance of spatial multiplexing in the p-
resence of polarization diversity and spatial fading corre-
lation. In particular, we show that P reveals the impact
of polarization diversity on the performance of spatial mul-
tiplexing quite accurately. We simulated a system with 1
dual-polarized transmit and 1 dual-polarized receive anten-
na using 4-PSK and employing an ML receiver. The signal-

to-noise-ratio (SNR) was defined as SNR = 10 log (QE“ )

o

Simulation Example 1. The first simulation example
serves to demonstrate that P provides an accurate estimate
of the symbol error rate for high SNR. For ¢t = 0.5, = 0.3
and a = 0.4, Fig. 1 shows the symbol error rate obtained
using Monte Carlo simulations along with the estimated
symbol error rate P. It can be seen that especially in the
high SNR regime the two curves match well. Note, however,
that P is not a strict upper bound on the symbol error rate.
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Fig. 1. Symbol error rate as a function of SNR.

Simulation Example 2. The second simulation ex-
ample serves to demonstrate the benefit of polarization di-
versity. For an SNR of 15dB, Fig. 2 shows the symbol er-
ror rate along with P as a function of « for various values
of t and for r = 0. It can be seen that for low trans-
mit correlation the use of polarization diversity leads to a
performance degradation or equivalently reduced multiplex-
ing gain. (Recall that @ = 1 can be interpreted as having
two physical antennas on each side of the link all of which
employ the same polarization.) This result conforms with
the investigations in the last paragraph of Sec. 3.2. When
the transmit correlation starts to increase and the condi-
tion number of the channel matrix realizations increases or
equivalently the angle between the realizations of the two
columns decreases, polarization diversity yields improved
spatial separation and hence increases the multiplexing
gain. We found that starting at ¢ = 0.85 polarization di-
versity, i.e., @ < 1 starts improving the multiplexing gain.
We can also see that in the case of fully correlated transmit
antennas, i.e., t = 1, there is an optimum value of « for
which the symbol error rate is minimum. Observe that this
minimum is accurately predicted by P. Fig. 2 furthermore
shows that for high transmit correlation the use of polar-
ization diversity can improve the symbol error rate by up



to an order of magnitude.
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Fig. 2. Symbol error rate as a function of o for various
values of the transmit correlation coefficient t.

Simulation Example 3. In the last simulation ex-
ample, we study the performance of spatial multiplexing
with and without polarization diversity in the presence of
receive correlation only. Fig. 3 shows the symbol error rate
along with P for ¢t = 0 and various values of r. We observe
that for » = 1 the use of polarization diversity increases the
multiplexing gain or equivalently reduces the symbol error
rate. This effect, however, is much less pronounced than in
the case of transmit correlation only. The reason for this is
that in the presence of transmit correlation there are code
vectors which “tend to excite the null space of the channel
matrix” and hence yield very high probability of error. This
does not happen in the case of receive correlation only. A
more detailed description of this observation is provided in
[12]. For r = 1, the optimum value of o seems to be the
same as in the case of transmit correlation only with ¢ = 1.
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Fig. 3. Symbol error rate as a function of a for various
values of the receive correlation coefficient r.

5. CONCLUSION

We studied the use of polarization diversity for spatial
multiplexing and found that in the presence of high spa-
tial fading correlation dual-polarized antennas can yield a

significantly improved multiplezing gain. In particular, we
computed an estimate of the uncoded symbol error rate
which was found to be very accurate in the high SNR regime
and which allows to study the impact of polarization di-
versity on the performance of spatial multiplexing without
having to resort to time-consuming computer simulations.
We demonstrated that especially in the presence of transmit
correlation the use of polarization diversity can yield signif-
icant improvements in terms of symbol error rate. Further-
more, we found that for high spatial fading correlation and
for a given SNR in general there is an optimum value of o
for which the symbol error rate is minimum. Our symbol
error estimate accurately predicts this point. Finally, we
provided simulation results.
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