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ABSTRACT

Matching Pursuit (MP) uses a greedy search to con-
struct a subset of vectors, from a larger set, which will best
represent a signal of interest. Here, we extend this search
for the best subset by keeping the K vectors which maxi-
mize the selection criterion at each iteration. This is termed
the MP:K algorithm and represents a suboptimal search
through the tree of all possible subsets where each node is
limited to having K children. As a more suboptimal search,
we can use the M-L search to select a subset of dictionary
vectors, leading to the MP:M-L algorithm. We compare the
computation and storage requirements for three variants
of the MP algorithm using these searches. Through sim-
ulations, the signi�cantly improved performance obtained
using the MP:K and MP:M-L algorithms is demonstrated.
We conclude that the Modi�ed Matching Pursuit (MMP)
algorithm o�ers the best compromise between performance
and complexity using these search techniques.

1. INTRODUCTION

In many applications, it is desirable to select a small number
of vectors from a large dictionary (i.e., over-complete collec-
tion of vectors) to represent a signal. For instance, e�cient
coding of speech and video signals [1] can be achieved using
such a representation. This problem has also received at-
tention in areas as diverse as biomagnetic inverse problems
and stock market analysis [2]. With this wide spectrum of
applications, many di�erent solutions have been proposed
for the selection of the representation vectors.

In [3], the subset selection problem has been shown
to be NP-hard. If we consider a dictionary of n vectors,
A = fa1; a2; � � � ; ang; ai 2 Rm, from which r are to be
chosen to represent a signal, b 2 Rm, then there are a
total of N =

�
n

r

�
possible subsets which must be consid-

ered. For small values of n and r, an exhaustive search
is possible over all subsets Si; i = 1; � � � ; N with the opti-
mal set, S�, minimizing the representation error, i.e., S� =
argminSi kP

?
Si
bk2; i = 1; � � � ; N . In the case where m � n,

we may start from a representation employing all elements
of the dictionary and then delete elements sequentially to
obtain the optimal subset S�. This is done by using a
branch and bound algorithm [4] which can be used because
the representation error can only increase as elements are
deleted. This algorithm constructs a tree for the deletion
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of dictionary elements and e�ciently searches through the
feasible subsets. A best-�rst search through the tree results
in a sequential elimination algorithm which has been ex-
amined in [5]. If m > n, then the representation error is
0, in general, until > (n �m) elements have been deleted
and so the branch and bound algorithm cannot be used to
obtain a solution to this problem. An extension of the back-
ward elimination algorithm to deal with an over-complete
dictionary has been considered in [6].

Other approaches have also been suggested such as those
based on minimizing diversity measures including function-
als whose minimization promotes sparsity like the `1 norm
[7] or the more general `(p�1) norm [2, 8]. However, the class
of algorithms considered here are Matching Pursuit (MP)
algorithms which sequentially add elements to the represen-
tation subset. These algorithms o�er a low cost suboptimal
solution to the problem, frequently performing as well as
the algorithms mentioned above [9]. Three variants of MP
have been proposed and we have compared the performance
and complexity of these algorithms in our previous work [9].

In this paper we consider two extensions of the MP
paradigm. As outlined in section 2, each of the three MP
algorithms proceeds by greedily selecting vectors to add to
the representation subset. In section 3, we extend these
MP algorithms by retaining the K(� 1) vectors which best
match the residual corresponding to each stored subset.
These vectors are then used to give K new subsets and the
K corresponding residuals are calculated. This algorithm,
termed MP:K, essentially works through subtrees of the full
tree where each node is limited to having K children. The
algorithm terminates when the required depth is reached.

There are many types of tree search [10] but one that
has been applied in many engineering applications is the M-
L search [11]. The M-L algorithm has been used in speech
recognition [12] as well as in obtaining improvements to the
Viterbi algorithm in decoding symbols in ISI channels [13].
In section 4, we combine the M-L algorithm with MP in
searching for a subset to represent the signal, giving the
MP:M-L algorithm. We then present simulations in section
5 which compare the MP:K and MP:M-L algorithms. We
draw some conclusions in section 6.

2. MATCHING PURSUIT ALGORITHMS

We review three di�erent algorithms which sequentially form
a subset of vectors to represent a signal. They are Basic
Matching Pursuit (BMP) [14], Modi�ed Matching Pursuit
(MMP), also known as Orthogonal Matching Pursuit [15, 9]
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and Order-Recursive Matching Pursuit (ORMP) [3]. In [9],
these algorithms are fully described and their performance
and computation discussed in detail. We brie
y describe
the algorithms here.

The dictionary of vectors is A = [a1; a2; � � � ; an] and,
for convenience, each vector is assumed to be of unit norm.
At the pth iteration, the chosen subset of vectors is Sp with
the indices stored in Ip. The residual vector is denoted by
bp, with b0 = b.

In the BMP, at the pth iteration, the vector from A
most closely aligned with the residual bp�1 is chosen, where
the alignment is measured as the 2-norm (denoted by k � k)
of the projection of the residual onto the vector, i.e.,

kp = argmax
l
kPalbp�1k (1)

= argmax
l
jaHl bp�1j

2; l = 1; � � � ; n; l 6= kp�1:

The new residual vector is then computed as

bp = bp�1 � Pakp bp�1 = bp�1 � (aHkpbp�1)akp : (2)

The algorithm terminates when the desired number, r, of
vectors have been selected.

There is an inherent suboptimality in the calculation of
the residual in the BMP algorithm, as given in (2), as seen
by noting that

bBMP
p = P?akp bp�1 = �pl=1P

?
akl

b 6= P?SBMP
p

b; akl 2 SBMP
p :

At the pth iteration of the MMP and ORMP algorithms,
the residual is obtained by projecting b onto the orthogonal
complement of the range space of Sp�1, i.e., bp�1 = P?Sp�1b.
The selection steps of MMP and ORMP use this residual
but the selection criteria are di�erent [9]. Due to space
limitations, we omit these details here.

3. MP:K ALGORITHMS

In each of the MP algorithms, a greedy approach is taken
to choosing which vector to add to the subset, Sp�1, based
on the current value of the residual, bp�1. Even though we
calculate the alignment of bp�1 with all of the dictionary
vectors in order to make this choice, we discard all this in-
formation. Instead, we propose in the MP:K algorithms to
utilize this information to search other subsets which may
be able to represent b more e�ciently. Therefore, we keep
theK best matching vectors and theK corresponding resid-
uals obtained from the MP algorithm. Given the residual
at the (p�1)th stage, we select theK best matching vectors

fk
(1)
p ; � � � ; k

(K)
p g as follows:

k(i)p = argmax
l

F (al; bp�1); l 6= fk(1)p ; ::; k(i�1)p g; i = 1; ::; K;

(3)

where we have used the notation F (al; bp�1) to denote the
general selection criterion, i.e., that of either BMP, MMP

or ORMP. We then form fb
(1)
p ; b

(2)
p ; � � � ; b

(K)
p g:

If we consider this algorithm in terms of a tree, we use
the MP algorithms to rank which vectors should be added
to the set Sp�1 to best represent the signal b. However, be-
cause of the infeasibility of considering all such subsets, we

only consider the K best matching vectors. We, therefore,
limit each node in the tree to having K children. Even
though we exclude certain vectors at a given level, these
may enter the subset further down the tree.

We note that setting K = 1 just gives the \regular"
MP solution and that this will be among the subsets gen-
erated for all values of K. Indeed, by ordering the search

so that we descend along nodes corresponding to k
(1)
p , the

\regular" MP solution is generated �rst. This corresponds
to a best-�rst search [10]. The advantage of this is that if
the answer is determined to be su�ciently good, e.g., the
representation error is small, then there is no need for fur-
ther search of the tree. However, searching more of the tree
can often signi�cantly improve the performance of the algo-
rithms as will be seen in the simulations of section 5. Once
the required depth, r, is reached, we are left with a set of

subsets, fS
(1)
r ; � � � ; S

(L)
r g where there are L = K(r�1) leaf

nodes and the residuals obtained when the signal is repre-
sented by each of these subsets. The subset yielding the
smallest residual norm is chosen.

3.1. Computation

As has been mentioned, the tree search is performed by �rst
searching along the best possible path. From this point, we
need to backtrack to the previous level and then descend
along any of the alternative paths from this level to the
leaves of the tree. Then, we go up another level and de-
scend along any paths from here - this process continues
until all elements in the tree have been searched. There-
fore, the main storage and computational requirements are
introduced by the backtracking step.

In the MP:K algorithm as described above, the number
of nodes at each level grows exponentially. It is easily seen
that the total number of nodes will be

# Nodes =
Kr � 1

K � 1
; 8K � 2

where K is the number of children at each node and r is the
number of representation vectors sought. Of course, once
the number of nodes becomes too large, it is possible to
form a new root node and recommence the MP:K search
from this node.

For the BMP, the residual and residual norm must be
available for backtracking once the best-�rst path has been
examined. Therefore, the number of storage locations (each
location holds a 
oating point number) required for the
residual norm is K(r � 1) and for the actual residual is

mK(r�1). In the case of MMP, fq
(1)
p ; q

(2)
p ; � � � ; q

(K)
p g must

be formed to obtain the subsets fS
(1)
p ; � � � ; S

(K)
p g, i.e., at

each node, we have Sp�1 and form S
(i)
p = [Sp�1; q

(i)
p ]; i =

1; ::; K. This requires K additional Gram-Schmidt compu-
tations [9] at each node.

The selection step in ORMP can be written as [9]

kp = argmax
l

jaHl bp�1j

ka
(p�1)
l k

; l =2 Ip�1; (4)

where a
(p�1)
l = P?Sp�1al. The norms ka

(p�1)
l k; l =2 Ip�1,

increase the computation and storage over that required
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(b) MMP
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(c) ORMP
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Fig. 1. For each of the three methods, in the �rst row the MP:K results are shown with K = 1; 2; 3 (recall that K = 1
gives the \regular" MP results). In the second row, the MP:M-L results are given for K = 2; 3; 5. Each histogram gives the
percentage of trials in which 1-7 components are correctly identi�ed.

in MMP. In order to backtrack we must have the norms,

ka
(p)
l k2; l = 1; � � � ; n, available at each level of the tree and

this requires n(r � 1) storage locations. It is possible to
obtain these quantities recursively as given in [9]

ka
(p)
l k2 = ka

(p�1)
l k2 � (jaHl qpj)

2: (5)

Moving down the tree, we need to calculate the �nal term in

this expression at each node for fq
(1)
p ; q

(2)
p ; � � � ; q

(K)
p g. This

means that there is a signi�cant increase in computation of
� nK inner-products at each node.

4. MP:M-L ALGORITHMS

The problem with the previous search is that the number of
subsets increases exponentially with the depth of the tree.
In the M-L search [11] there are M paths at each level and
the �nal level is L. In keeping with the notation above,
we will let M = K and so at each level we retain only the
K nodes which have the lowest residual norm and discard
all others. For each of the K nodes at a given level, we
use the MP algorithm, as in (3), to �nd the best residuals,

fb
(1)
p ; � � � ; b

(K)
p g, at the next level. There are K2 residuals

to choose from. We expand only the nodes with the K
lowest cost residuals and prune the other nodes. We move
to the next level and continue until we reach the required
depth.

This is also a tree search but is more suboptimal than
the search outlined in the previous section since we reduce
the number of nodes at each level to K. In the previous
case, we were ensured of having the MP solution (K = 1)
as one of the solutions which would be considered. This is
not the case here as, with K > 1, we may be taken away
from this solution at some level in the tree. It is possible
also that di�erent paths give the same residual so these two
nodes are merged and the next highest cost node is used to
give an alternative path through the tree.

An advantage of this method is that there are only
K(r�1) MP computations required. In addition there is no
backtracking so only the current level must be stored which
reduces the storage. The ORMP will still require storage of

the norms, ka
(p�1)
l k; l 62 Ip�1, along each surviving path.

5. SIMULATIONS

We consider two simulations in keeping with our previous
work on MP algorithms [9]. In the �rst simulation, there is
no correlation between the dictionary elements while in the
second simulation the dictionary is highly correlated.

5.1. Experiment 1

In this experiment, the dictionary is created as a random
m� n matrix, A, whose entries are Gaussian random vari-
ables with mean 0 and variance 1. A sparse solution, xs,
with a speci�ed number of nonzero entries, r, is then cre-
ated; the indices of these r entries are random, and their
amplitudes are random. The vector b is then computed as
b = Axs. Noise is added to b to give a set value of SNR.
The algorithms are then run with the value of r known.

We treat the problem as a component detection prob-
lem and determine how successfully we can �nd the vectors
which were used in generating the observed signal, b. Once
all the solutions have been produced by MP:K or MP:M-
L for a given value of K, the subset corresponding to the
smallest residual norm is chosen as the suboptimal solution.
The vectors in this subset are then compared to the gener-
ating vectors. The experiment was run withm = 20; n = 30
and r = 7 with SNR set to 60dB.

Results

In the �rst row of �gure 1, the results are plotted for BMP,
MMP and ORMP where MP:K is used with K = 1; 2; 3.
The second row shows the results for the M-L algorithm
with K = 2; 3; 5 for each algorithm. In �gure 1(a), increas-
ing K improves the performance of BMP but due to the
inherent suboptimality of the BMP [9], our success is rel-
atively poor in identifying all r of the generating vectors
with this small tree depth. This problem is overcome by
using the MMP or ORMP algorithms and the usefulness of
the larger value of K becomes clear.

In �gure 1(b), we note that for MMP there is a large
improvement in successfully �nding all seven components
which were used in generating the observed vectors. For
MMP:K, the percentage of trials where all seven compo-



4

nents are detected is increased from 66% for K = 1 to 96%
for K = 2 and we have 100% success with K = 3. There
is little gained in increasing K from 2 to 3 which is impor-
tant since there is a huge increase in complexity incurred
by doing this, i.e., the number of nodes increases from 128
to 1093. In the second row of �gure 1(b), for MMP:M-L,
the percentage success increases from 66% to 86% to 93%
as K goes from 1 to 3 to 5 and so this is slightly inferior to
MMP:K, though the complexity of this search is much less
than MMP:K.

The results obtained for ORMP in �gure 1(c) are very
similar to those of the MMP, showing only a very marginal
improvement in both the case of the ORMP:K and ORMP:M-
L algorithms.

5.2. Experiment 2:

This simulation is based on work in [7] and the analyzing
dictionary is generated by �lters for a class of wavelets called
Symmlets so that the dictionary vectors are correlated. The
input signal is termed \Carbon" and consists of a linear
combination of elements from this dictionary: a Dirac, a
sinusoid and 4 mutually orthogonal wavelet packet atoms.

Results

The ORMP:M-L algorithm was run for K = 1; 3; 5 and
the best subset was obtained based on the smallest residual
error. In �gure 2(a), we plot the fall o� in residual norm
for this subset against the iteration number for each of the
solutions obtained using the ORMP:M-L algorithm with
K = 1; 3; 5. The best subsets for K = 3 and K = 5 coincide
and the residual norm obtained after 9 elements are selected
is negligible; it takes 11 elements to achieve this withK = 1.
The ORMP:K algorithm with K = 2 also generates the
same subset as ORMP:M-L with K = 3.

In the case of MMP:M-L, as shown in �gure 2(b), there
is a large reduction in the residual after 5 elements have
been selected with K = 3; 5 while the residual is reduced to
:0063 after 12 elements have been selected. In contrast, with
K = 1, after 15 elements have been chosen, the residual
still has a magnitude of :0421. Although, the scale makes it
di�cult to see, there is an improvement from .0019 to .0008
in the error obtained after 15 selections when K = 5 is used
rather than K = 3. The performance is slightly inferior to
that obtained using MMP:K with K = 2.
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Fig. 2. Plot of residual norm with iteration number: (a)
ORMP:M-L (b) MMP:M-L with K = 1(��), K = 3(� � � )
and K = 5(�:�) (K = 3 and K = 5 coincide).

6. CONCLUSIONS

We have explored the use of more complex tree search tech-
niques using MP and experimented with the MP:K and
MP:M-L algorithms. Both these algorithms signi�cantly
improve upon the performance obtained using the regular
MP algorithm. With the MP:K algorithm, we saw that
K = 2 gives a large increase in performance with low cost
compared to larger values of K. The performance of the
MP:M-L algorithm almost matches that of MP:K and has
a lower search complexity. In both algorithms, the increased
complexity and storage required by using the ORMP makes
the use of the MMP more attractive for this type of search.
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