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ABSTRACT

Forestrymanagementequirescareful and intensive plan-
ning effortsto ensureoptimalyield, ecologicalstability, and
regulatorycompliance.In this paper we describea method
of identifying wetlandsand producingmapsof their extent
from commonlyavailable, remotely-sense@nagery This
methodprovides a large labor savings over both field in-

spectionsaandmanualphotoinspections.The enhancedc-
curag translatesinto better timber harvest planning and
betterconserationof thewetlands.

1. INTRODUCTION

Wetlandsaredefinedas“lands transitionalbetweenterres-
trial and aquaticsystemswherethe watertableis usually
at or nearthe surface or the land is covered by shallov
water’[1] Thereareseveralindustriesconcerneavith study-
ing wetlands.Fromthe point of view of atimbercompavy,
wetlandsrepresent significantchallengein hanestplan-
ning. Wetlandsdo not producemuchtimber, sincetypically
hanestedtreespreferto grow in drier soil. Additionally, it
is difficult to operateharestingequipmenin wetlands.

Wetlandssupporta large numberof both speciesthat
cannotsurvive arywhereelse.For thisreasonfederalregu-
lationssuchasthe CleanWaterAct (33 United StatesCode
Part 1344),aswell asvaryingstatelaws, disallov mary ac-
tivitiesin wetlandsjncludinglogging.

However, wetlandsare not only an interestof thosein
the forestryindustry Any partyto a real estatetransaction
hasa pecuniaryinterestin determiningif ary partsof the
propertyare subjectto wetlandregulations. To know ex-
actly hov muchandwhich partsof the propertyis wetland
is evenmorevaluable.

We proposea two-stepmethodof wetlandmappingus-
ing remotelysensedmagery Ratherthanstartanav from
theraw data,we chooseto leveragean existing technology
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from theforestryindustry Weyerhaeuse€orporationcur-
rently generatesnapsof wetlandareasfrom Landsat-TM
imagery that representtheir best automaticallygenerated
estimateof the wetlands. We usethesemaps,which are
relatively low-resolution,as a sourceof information com-
plementaryto relatively high-resolutioraerialphotography
which we processwith respecto texture. Whencombined,
our sggmentedexture mapandthe previous estimategen-
eratea highly accurateandprecisewetlandmap.

2. CURRENT WETLAND MAPPING

The region we studiedwas a six by six mile townshipin

Washingtonstate. Our main sourceof datawas an aerial
photowhich hasa resolutionof 2 metersper pixel. Figure
1 shows a well-known wetlandareain detail for which we
will summarizeour results. Threesalientareashave been
indicatedby hand.Thechallengés to delineatethe bound-
ariesbetweertheseareason a pixel-by-pixel basis. Thisis

madedifficult by thefactthatalthoughsomeboundariesire
quite obvious — suchasthat betweenthe conifer and clear
cut areas- otherboundariesare non-eistent,and mustbe
inferredfrom the presencef nearbyboundaries.

The currentstateof the art, asusedby Weyerhaeuseiis
describedby Ma et al.[2] In brief, LandsatTM imageryis
usedby anexpertoperatorto selectsomeexamplesof wet-
land areagto form a training set. As analternatve to man-
ual selectionthetrainingsetcould,in large part,bederived
from known wetlandareadn the NationalWetlandslnven-
tory databaseprovided by the federalgovernment. The
NWI databasein practice,turnsout to be a consenrative
estimateof wetland areas,meaningthat not all wetlands
are marked, but areasthat are marked do actually repre-
sentwetlands.In a procesf iterative refinementa Gaus-
sianmaximum-likelihoodbasectlassifieris usedto classify
eachLandsatpixel aswetlandor non-wetland.The Land-
satimageryusedis ataresolutionof 28.5metersper pixel,
andincludesmultiple bands. Among theseare bothinfra-
red anduvisible light bands.Theinfra-redbandcarriesuse-
ful informationaboutthe presencef waterin the area. In



eachiteration,theoperatormaymodify thetrainingsetused
by the classifier addingexampleswhich werenot captured
previously.

Thisprocessesultsn amapgenerate@taresolutionof
28.5metersper pixel, asshow in figure 5. As canbe seen,
the mapbearsa resemblancéo the wetlandareashown in
figure 1, however, its low resolutionprecludest from accu-
rately estimatingthe areaof the wetlands. This classifica-
tion canbethoughtof asanaccuratédetector”of wetlands.
Thatis, over the entire 36 squaremiles, this classifierwill
produce“blobs” similar to figure 5, the location of which
indicateswetlandsin thevicinity.

Wetland

Conifers

Clear
Cut

Fig. 1. Detailedareaof study Note that the wetlands,
roughly in the centralareaof the figure, are interspersed
with trees. Thereis alsoa breakin the standof conifers,
towardsthe lower left, wherethe wetlandsare contiguous
with the previously clearcutarea.

3. HIGH RESOLUTION WETLAND MAPPING

Therearetwo mainchallengedo higherresolutionwetland
mapping. First, the borderswhich are apparento the eye
immediatelyin the high resolutionaerial photographyare
notwell tracedin low resolutionmapslike figure 5. There
is obvious “wandering”from the true border This stems
from the factthatin the 28.5m per pixel Landsatmagery
thefine borderof treelinesis not well-defined,evento the
experteye. Our solutionto this problemliesin generatinga
high-resolutiormapfrom the aerialphotosandis described
in section3.1.

The secondissueis that areasthat appearcontiguous
andhomogeneoum thevisible-spectrunaerialphotosmay
actuallybe heterogeneousiowever, we have obsenedthat
the mapsgeneratedrom Landsatimagery(basedpartially
ontheinfra-redbands)odiscriminatebetweertheseareas.
We proposeand have implementedthe methoddescribed
in section3.2 for combiningthe high- and low-resolution

.

Fig. 2. Mean Entropy featuremap for the areashavn in
figurel. Lighter shadesneangreaterentropy.

mapsto generateour final, high resolution,high accuray
map.

3.1. Texture Segmentation

An early obsenation we madewas that the aerial photo,
consideredsaluminancemage ,wasuncorrelatedvith the
locationsof wetlands. The imagehadto be transformed
into the texture domainto proceedwith a meaningfulsey-
mentation. Texture featureshave beenusedin wetlandap-
plications before, asin Yamagataand Yasuoka,who ap-
plied themto ERS-1and JERS-1limagery[3] They used
thetexture featuresasinput to a classifier We usethe tex-
ture featuresasan input to a sggmentationalgorithm. We
adoptedthis approachafter we attemptedseveral classifi-
cationschemesandfound the resultsunsatisctory This
was dueto the fact that thereare multiple classesf wet-
landspresenin theimagery Similarly, YamagataandYa-
suokanote that out of more than six classesof wetlands,
only two (bogandwaterinundated)wveredistinguishablén
the JERS-limageryusingtheir classifier

Our image segmentationalgorithm relies on the local
valuesof thetexturefeaturebeingprocessedit doesnotre-
quire specificclassego be preparecaheadof time astrain-
ing sets.Any suflicient changen the featurevaluewill re-
sultin aseggmentbeingdemarcatedWe beganby creatinga
texturevectorbasednthefeaturesdescribedn Guetal.[4]
Empiricaltestingshavedthatthe meanentroygy featurepro-
vided the bestseggmentation,andthe otherelementsof the



vectorwere discarded. Mean entropy is calculatedasthe
averageof:

G . .
-y fa,z(l) log (fa,z(@)
=0

fs5,6(4) represents probability densityfunctionfor dis-
tanced andangled for apoint (n,m) in theimage.Thisis
theprobabilitythatthedifferencebetweerthepixel valueat
location(n, m) andthepixel at(n, m) + (4, 8) is equalto .
L representshesamplesize.

The value of the meanentrogy function for the image
areawe areconsiderings shavn in figure 2.

We thensegmentthe entropy mapshawn in figure 2 us-
ing astandarcedgedetectioralgorithminto a setof regions.
As shown in figure 3, this resultsin a meaningfulsggmen-
tation: theconiferareais clearlydemarcate@longall of its
boundariesandsmall clumpsof treesin the middle of the
wetlandareahave alsobeenisolated.

Fig. 3. Boundariegesultingfrom segmentingthe texture
featuremap.

Figure4 shavstheseboundariesuperimposedponthe
aerialphoto. The boundariesloselyfollow the changesn
texture in the image. However, the boundariessometimes
fail to divide regionsof wetlandfrom clearcutregions.The
lower left cornerof figure 4 is anexampleof this. To “seal
off” theseboundariesye combinethe previous, low reso-
lution mapwith our new high-resolutiorboundaries.

Fig. 4. Boundariesrom texture sggmentationoverlaid on
aerialphotography(Solarizedfor bettercontrast.)

3.2. Merging Multi-Resolution Estimates

To provide the bestestimateof the wetlandboundariesye
mergethelow-resolution(figure5) andhighresolution(fig-
ure3) maps.We begin with theobsenationthattheLandsat-
generatednapis a good indicator of the size andgeneral
shapeof a wetlandregion. The aerial photo segmentation
providesmeaningfulboundariesbut givesno semantidn-
dicationof which segmentsarewetlands.

Thefirst stepis to corggisterthe two mapsso that they
representhe sameareaat the same high resolutionscale.
We apply a binary morphologyoperatorto dilate the low-
resolutionmap. This senesto unite isolatedblocksin this
mapwith nearby largerregions. The low-resolutionmapis
only providing theroughlocationof wetlands.Thedilation
doesnotseneto simply dilatethefinal bordersbecausehe
mapis combinedwith the high-resolutiormaplater.

Next, we performa connecteccomponentsanalysisof
eachmap. This resultsin two new mapsin which eachre-
gion of 8-connectegixelsis labelledwith aninteger Say
thereare x componentsn the low-resolutionmap and y
componentsn the high-resolutionmap. Let L(p,q) and
H(p, q) representhe integer label of imagepoint (p, ¢) in
thelow andhigh-resolutiomrmaps respectiely.

We thenconstructa coincidencematrix C' of sizex x y.
C(m,n) containsthe numberof pixelsin componentn in
thelow-resolutionmapthatarein component: in the high
resolutionmap. The backgroundcomponentof the low-
resolutionmapis omittedfrom this matrix. Then,for each



componentn in the low-resolutionmap,we find the com-
ponentr from thehigh-resolutiormapwith themostshared
pixels. This correspond$o computingavectorM of length
x where:

M(i) = arg max {C(i,n)}

This senesto matchup low-res and high-rescompo-
nents.Thefinal mapis constructeat high resolutionasfol-
lows. For eachpixel position(p, q), if H(p,q) = M (L(p,q))
thenwe denote(p, ¢) aswetlandin the outputimage.

Fig. 5. The resultsof classifying the Landsatimagery
White representsvetlands.

This methodlimits the extentof a wetlandborderto the
dilatedcomponent$rom thelow-resolutionmap. However,
it simultaneoushallows high-resolutiorborderdo take prece-
dence.In otherwords, the extent of a “leak” from a high-
resolutionregionis limited by the low resolutionmapesti-
mate.Thefinal resultmaskis shavn in figure 6.

4. CONCLUSION

Contrastingfigure 6 andfigure 5 it is immediatelyappar
ent that the resultsshovn hererepresent significantim-
provementin the precisionof wetlandsmapping.Thereso-
lution hasbeenimprovedby afactorof over 14times.Field
trips to this well-known wetlandareahave confirmedthat
theboundariedie aspredicted gstablishingheaccurag of
themethod.Theresultsfor therestof thetownshiparecur-
rently underevaluationin thefield.

Fig. 6. Final resultsshowving high-resolutionwetlands.

Thisrepresents novel methodandadwancein the state
of theartfor mappingwetlandboundariesMergingtwo es-
timatespnerobustin accurag, theotherrobustin precision,
formsamoreusefulmapthatcanbeusedto generatdigher
harestyieldsandconsenre preciousnaturalresources.
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