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ABSTRACT

Forestrymanagementrequirescareful and intensive plan-
ningeffortsto ensureoptimalyield,ecologicalstability, and
regulatorycompliance.In this paper, we describea method
of identifying wetlandsandproducingmapsof their extent
from commonlyavailable, remotely-sensedimagery. This
methodprovidesa large labor savings over both field in-
spectionsandmanualphotoinspections.Theenhancedac-
curacy translatesinto better timber harvest planning and
betterconservationof thewetlands.

1. INTRODUCTION

Wetlandsaredefinedas“lands transitionalbetweenterres-
trial andaquaticsystemswherethe water table is usually
at or near the surfaceor the land is coveredby shallow
water.”[1 ] Thereareseveralindustriesconcernedwith study-
ing wetlands.Fromthepoint of view of a timbercompany,
wetlandsrepresenta significantchallengein harvestplan-
ning. Wetlandsdonotproducemuchtimber, sincetypically
harvestedtreespreferto grow in drier soil. Additionally, it
is difficult to operateharvestingequipmentin wetlands.

Wetlandssupporta large numberof both speciesthat
cannotsurviveanywhereelse.For this reason,federalregu-
lationssuchastheCleanWaterAct (33UnitedStatesCode
Part1344),aswell asvaryingstatelaws,disallow many ac-
tivities in wetlands,includinglogging.

However, wetlandsarenot only an interestof thosein
the forestryindustry. Any party to a realestatetransaction
hasa pecuniaryinterestin determiningif any partsof the
propertyaresubjectto wetlandregulations. To know ex-
actly how muchandwhich partsof thepropertyis wetland
is evenmorevaluable.

We proposea two-stepmethodof wetlandmappingus-
ing remotelysensedimagery. Ratherthanstartanew from
theraw data,we chooseto leverageanexisting technology
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from the forestryindustry. WeyerhaeuserCorporationcur-
rently generatesmapsof wetlandareasfrom Landsat-TM
imagery that representtheir best automaticallygenerated
estimateof the wetlands. We usethesemaps,which are
relatively low-resolution,asa sourceof informationcom-
plementaryto relatively high-resolutionaerialphotography
which we processwith respectto texture. Whencombined,
our segmentedtexture mapandthe previousestimategen-
eratea highly accurateandprecisewetlandmap.

2. CURRENT WETLAND MAPPING

The region we studiedwas a six by six mile township in
Washingtonstate. Our main sourceof datawasan aerial
photowhich hasa resolutionof 2 metersperpixel. Figure
1 shows a well-known wetlandareain detail for which we
will summarizeour results. Threesalientareashave been
indicatedby hand.Thechallengeis to delineatethebound-
ariesbetweentheseareason a pixel-by-pixel basis.This is
madedifficult by thefactthatalthoughsomeboundariesare
quite obvious– suchasthat betweenthe conifer andclear
cut areas– otherboundariesarenon-existent,andmustbe
inferredfrom thepresenceof nearbyboundaries.

Thecurrentstateof theart,asusedby Weyerhaeuser, is
describedby Ma et al.[2] In brief, LandsatTM imageryis
usedby anexpertoperatorto selectsomeexamplesof wet-
landareasto form a trainingset. As analternative to man-
ualselection,thetrainingsetcould,in largepart,bederived
from known wetlandareasin theNationalWetlandsInven-
tory database,provided by the federalgovernment. The
NWI database,in practice,turns out to be a conservative
estimateof wetlandareas,meaningthat not all wetlands
are marked, but areasthat are marked do actually repre-
sentwetlands.In a processof iterative refinement,a Gaus-
sianmaximum-likelihoodbasedclassifieris usedto classify
eachLandsatpixel aswetlandor non-wetland.The Land-
satimageryusedis at a resolutionof 28.5metersperpixel,
andincludesmultiple bands.Among theseareboth infra-
redandvisible light bands.Theinfra-redbandcarriesuse-
ful informationaboutthepresenceof waterin the area. In



eachiteration,theoperatormaymodify thetrainingsetused
by theclassifier, addingexampleswhich werenot captured
previously.

Thisprocessresultsin amapgeneratedataresolutionof
28.5metersperpixel, asshow in figure5. As canbeseen,
the mapbearsa resemblanceto the wetlandareashown in
figure1, however, its low resolutionprecludesit from accu-
rately estimatingthe areaof the wetlands.This classifica-
tion canbethoughtof asanaccurate“detector”of wetlands.
That is, over the entire36 squaremiles, this classifierwill
produce“blobs” similar to figure 5, the locationof which
indicateswetlandsin thevicinity.

Fig. 1. Detailed areaof study. Note that the wetlands,
roughly in the centralareaof the figure, are interspersed
with trees. Thereis alsoa breakin the standof conifers,
towardsthe lower left, wherethe wetlandsarecontiguous
with thepreviouslyclearcutarea.

3. HIGH RESOLUTION WETLAND MAPPING

Therearetwo mainchallengesto higherresolutionwetland
mapping. First, the borderswhich areapparentto the eye
immediatelyin the high resolutionaerialphotographyare
not well tracedin low resolutionmapslike figure5. There
is obvious “wandering”from the true border. This stems
from the fact that in the28.5m perpixel Landsatimagery,
thefine borderof treelines is not well-defined,evento the
experteye. Oursolutionto thisproblemlies in generatinga
high-resolutionmapfrom theaerialphotosandis described
in section3.1.

The secondissueis that areasthat appearcontiguous
andhomogeneousin thevisible-spectrumaerialphotosmay
actuallybeheterogeneous.However, wehaveobservedthat
the mapsgeneratedfrom Landsatimagery(basedpartially
ontheinfra-redbands)dodiscriminatebetweentheseareas.
We propose,andhave implemented,the methoddescribed
in section3.2 for combiningthe high- and low-resolution

Fig. 2. Mean Entropy featuremap for the areashown in
figure1. Lightershadesmeangreaterentropy.

mapsto generateour final, high resolution,high accuracy
map.

3.1. Texture Segmentation

An early observation we madewas that the aerial photo,
consideredasaluminanceimage,wasuncorrelatedwith the
locationsof wetlands. The imagehad to be transformed
into the texturedomainto proceedwith a meaningfulseg-
mentation.Texturefeatureshave beenusedin wetlandap-
plications before, as in Yamagataand Yasuoka,who ap-
plied them to ERS-1and JERS-1imagery.[3] They used
the texture featuresasinput to a classifier. We usethe tex-
ture featuresasan input to a segmentationalgorithm. We
adoptedthis approachafter we attemptedseveral classifi-
cationschemes,andfound the resultsunsatisfactory. This
wasdue to the fact that therearemultiple classesof wet-
landspresentin the imagery. Similarly, YamagataandYa-
suokanote that out of more than six classesof wetlands,
only two (bogandwaterinundated)weredistinguishablein
theJERS-1imageryusingtheir classifier.

Our imagesegmentationalgorithm relies on the local
valuesof thetexturefeaturebeingprocessed.It doesnot re-
quirespecificclassesto bepreparedaheadof time astrain-
ing sets.Any sufficient changein thefeaturevaluewill re-
sult in asegmentbeingdemarcated.Webeganby creatinga
texturevectorbasedonthefeaturesdescribedin Guetal.[4]
Empiricaltestingshowedthatthemeanentropy featurepro-
vided the bestsegmentation,andthe otherelementsof the



vectorwerediscarded.Meanentropy is calculatedas the
averageof:
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The valueof the meanentropy function for the image

areawe areconsideringis shown in figure2.
We thensegmenttheentropy mapshown in figure2 us-

ing astandardedgedetectionalgorithminto asetof regions.
As shown in figure3, this resultsin a meaningfulsegmen-
tation: theconiferareais clearlydemarcatedalongall of its
boundaries,andsmall clumpsof treesin the middleof the
wetlandareahavealsobeenisolated.

Fig. 3. Boundariesresultingfrom segmentingthe texture
featuremap.

Figure4 showstheseboundariessuperimposeduponthe
aerialphoto. Theboundariescloselyfollow thechangesin
texture in the image. However, the boundariessometimes
fail to divideregionsof wetlandfrom clearcut regions.The
lower left cornerof figure4 is anexampleof this. To “seal
off ” theseboundaries,we combinethe previous, low reso-
lution mapwith ournew high-resolutionboundaries.

Fig. 4. Boundariesfrom texture segmentationoverlaid on
aerialphotography. (Solarizedfor bettercontrast.)

3.2. Merging Multi-Resolution Estimates

To provide thebestestimateof thewetlandboundaries,we
mergethelow-resolution(figure5) andhighresolution(fig-
ure3)maps.Webeginwith theobservationthattheLandsat-
generatedmap is a good indicatorof the sizeandgeneral
shapeof a wetlandregion. The aerialphotosegmentation
providesmeaningfulboundaries,but givesno semanticin-
dicationof whichsegmentsarewetlands.

Thefirst stepis to coregisterthe two mapsso that they
representthe sameareaat the same,high resolutionscale.
We apply a binary morphologyoperatorto dilate the low-
resolutionmap. This servesto unite isolatedblocksin this
mapwith nearby, largerregions.Thelow-resolutionmapis
only providing theroughlocationof wetlands.Thedilation
doesnotserve to simply dilatethefinal bordersbecausethe
mapis combinedwith thehigh-resolutionmaplater.

Next, we performa connectedcomponentsanalysisof
eachmap. This resultsin two new mapsin which eachre-
gion of 8-connectedpixels is labelledwith an integer. Say
thereare ( componentsin the low-resolutionmap and )
componentsin the high-resolutionmap. Let
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Fig. 5. The resultsof classifying the Landsatimagery.
White representswetlands.

Thismethodlimits theextentof a wetlandborderto the
dilatedcomponentsfrom thelow-resolutionmap.However,
it simultaneouslyallowshigh-resolutionbordersto takeprece-
dence.In otherwords,the extent of a “leak” from a high-
resolutionregion is limited by the low resolutionmapesti-
mate.Thefinal resultmaskis shown in figure6.

4. CONCLUSION

Contrastingfigure 6 andfigure 5 it is immediatelyappar-
ent that the resultsshown hererepresenta significantim-
provementin theprecisionof wetlandsmapping.Thereso-
lution hasbeenimprovedby afactorof over14times.Field
trips to this well-known wetlandareahave confirmedthat
theboundarieslie aspredicted,establishingtheaccuracy of
themethod.Theresultsfor therestof thetownshiparecur-
rentlyunderevaluationin thefield.

Fig. 6. Final resultsshowing high-resolutionwetlands.

This representsa novel methodandadvancein thestate
of theart for mappingwetlandboundaries.Mergingtwo es-
timates,onerobustin accuracy, theotherrobustin precision,
formsamoreusefulmapthatcanbeusedto generatehigher
harvestyieldsandconservepreciousnaturalresources.
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