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ABSTRACT

We propose an efficient mixture Gaussian synthesis method
for decision tree based state tying that produces better
context-dependent models in a short period of training time.
This method makes it possible to handle mixture Gaussian
HMMs in decision tree based state tying algorithm, and
provides higher recognition performance compared to the
conventional HMM training procedure using decision tree
based state tying on single Gaussian HMMs. This method
also reduces the steps of HMM training procedure because
the mixture incrementing process is not necessary. We ap-
plied this method to training of telephone speech triphones,
and evaluated its effect on Japanese phonetically balanced
sentence tasks. Our method achieved a 1 to 2 point im-
provement in phoneme accuracy and a 67% reduction in
training time.

1. INTRODUCTION

In creating context-dependent (CD) models such as tri-
phones, the number of possible models reaches tens of thou-
sands and there are always some models with few or no cor-
responding samples in the finite training data. Parameter
tying at the model or state level is essential to robustly esti-
mate the parameters of these rarely-seen and unseen mod-
els. Decision tree based state tying[1, 2] is a top-down clus-
tering algorithm which provides mappings to a tied state for
all possible models including unseen ones. This is a widely
used method and many studies on it have been reported.
For example, criteria for obtaining the optimal size of state
tyings were proposed in [3, 4], and approaches to generating
proper binary questions for the clustering were proposed in
[5, 6]. Decision tree based state tying was combined with
Viterbi alignment of training data and segmental clustering
to improve robustness of the models in [7].

ASR engines commonly use mixture Gaussian CD mod-
els to achieve higher performance. In the previous studies
described above however, decision tree based state tying is
processed on single Gaussian HMMs. As a result, the con-
ventional method requires repetitive mixture incrementing
and embedded training after the decision tree based state
tying. This procedure has two disadvantages: the state
tyings are produced with single Gaussian HMMs that rep-
resent acoustic characteristics of phone units very poorly,
and the training procedure takes a significant amount of
time due to repetitive mixture incrementing and embed-

ded training as the number of mixtures increases. To solve
these problems, we propose an effective approach to han-
dling mixture Gaussian HMMs in decision tree based state
tying. Our method produces adequate state tyings for mix-
ture Gaussian CD models because clustering is processed on
the same number of mixture Gaussians as the target mod-
els used for speech recognition. Furthermore, this method
greatly shortens the training time by skipping a large part
of the mixture incrementing and embedded training steps.
The proposed method synthesizes mixture Gaussian distri-
butions in the clustering process and tied-state CD models
of mixture Gaussian HMMs are output as the results.

In Section 2, we review conventional decision tree based
state tying. Section 3 points out the insufficiencies due
to the limits of single Gaussian in the conventional method
and then describes our approach to handling mixture Gaus-
sian HMMs. Experimental results on Japanese phonetically
balanced sentence tasks are presented in Section 4. Finally,
Section 5 presents our conclusions.

2. DECISION TREE BASED STATE TYING

Decision tree based state tying is a top-down clustering pro-
cess. Assuming that triphones are used as CD models, all
HMM states for corresponding positions of triphones de-
rived from a monophone are collected as a root node at the
beginning . Starting from the root node, nodes are suc-
cessively split into two successor nodes and a tree like that
shown in Fig. 1 is produced by clustering. The leaf nodes
are treated as equivalent classes where all states are tied to
one state. When a node is split into two successor nodes,
one of predefined binary questions related to phonetic con-
texts is chosen according to a criterion of goodness-of-split
maximization. A change in log likelihood for outputting
corresponding frames in training data is often used as the
goodness-of-split. The clustering proceeds until stopping
conditions are fulfilled. The stopping conditions are as fol-
lows: the goodness-of-best-split falls below a threshold or
the number of frames that states in the node occupies in
the training data falls below a threshold.

Let node S, be split by question ¢ into two successor
nodes, Sy y(¢) and Sm n(g). The change in log likelihood

is given by
ALg = L(Smy(9)) + L(Sma(@)) = L(Sm) (1)

The log likelihood L(Sr,) is calculated by an approximate
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Fig. 1. Phonetic decision tree

function of the variance of feature vectors and the expected
number of occupied frames in the training data, since the
direct calculation of log likelihood for all these frames would
otherwise take an enormous amount of time. For this ap-
proximation, the mean vector and diagonal covariance ma-
trix of node S,, are given by the following equations.
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where fty, i, 0m,; and 'y, ; denote the mean vector, diag-
onal covariance matrix and expected number of occupied
frames by 2’th state in node S,,. The number k& denotes
the k’th component of feature vector. Given an observa-
tion sequence in the training data O;(t =1,...,T), the log
likelihood for node Sy, is given by

L(Sm)

Q

Zlog [N(O¢, fim, 6m)] - ve(m)

- —%(Klog2w+10g|am|+f()rm 4)

where y;(m) and Ty, denote the probability that states of
node S, are occupied at time ¢, and the expected number
of occupied frames in the sequence. Here, N (O, fim, 6:m)
indicates the probability that a Gaussian distribution of the
mean vector ji, and covariance matrix &, will output an
observation O;.

The goodness-of-split is thus found by the approxima-
tion for producing a decision tree. After the clustering
process, tied-state triphones of single Gaussians with the
largest variance in leaf nodes, or with the mean vector ji,,
and covariance matrixs o,,.

Since the decision tree based state tying outputs single
Gaussian HMMs, mixture Gaussian HMMs actually used
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Fig. 2. Synthesis of mixture Gaussian distributions for a
node in the proposed method in comparison with the con-
ventional method

in speech recognition are obtained through repetitive mix-
ture incrementing and embedded training after the deci-
sion tree based state tying. Mixture incrementing doubles
the number of Gaussians, by copying a distribution with a
perturbed mean vector and providing half of the original
mixture weight to both distributions. These steps are re-
peated until HMMs of the desired number of mixtures or
the required performance are obtained.

3. SYNTHESIS OF MIXTURE GAUSSIANS FOR
DECISION TREE BASED STATE TYING

In equation (4), the log likelihood L(Sy) which remotely
determines the state tyings is calculated on a single Gaus-
sian distribution. However as their superior performance in
speech recognition shows, mixture Gaussian distributions
represent acoustic characteristics much more precisely than
single Gaussians. We therefore conclude that the decision
tree based state tying should be processed on mixture Gaus-
sians. We also conclude that the decision tree based state
tying on distributions with the same resolution as the target
mixture Gaussian models produces better state tyings.

Our proposed method handles mixture Gaussian HMMs
for both input untied triphones and output tied-state tri-
phones, and also assumes mixture Gaussian expressions dur-
ing the clustering process. At every node of the decision
tree, all Gaussian components consisting of states in the
node are partitioned into N classes, where N indicates the
maximal number of mixtures among the states in the node.
N mixture Gaussian distributions are then newly synthe-
sized for the node. Fig. 2 shows differences between the
conventional and proposed methods.

Partitioning of Gaussian components is carried out by
K-means clustering algorithm. The mean vectors of input
models are the elements and variance-scaled Euclidean dis-
tance is the distance metric of the clustering. Following
the partitioning of Gaussian components, a new Gaussian
distribution is synthesized for each class of Gaussian com-
ponents. The mean vector and diagonal covariance of n’th



newly synthesized Gaussian distribution and its mixture
weight are given by the following equations.
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The expected number of occupied frames by 2’th component
in »’th classes Gammayy, i 1s approximated by the product
of expected number of occupied frames by the original state
and the component’s mixture weight.

After synthesizing the N mixture Gaussian distribu-
tions, They are used for calculation of log likelihood for the
training data. If we took overlaps between Gaussian dis-
tributions into account, the integral for the overlaps would
require an immense amount of computations. Hence in our
proposed method, we neglect the overlaps. We also approx-
imate the log likelihood derived from the mixture Gaussian
distributions by the maximum value among them. Instead
of equation (4), the log likelihood for the node S,, is ap-
proximated by

L(Sm)
T N
S D108 | D wmnN (O fimns tmn) | - 3(m)
t=1 n=1
T
~ Y log[max {wmnN (O, fimm, 5mn)}] - 7(m)
t=1
7 r
~ Z[Tm,nlogwm,n — WQL’" (Klog2m + log|6m,n| + K)]
n=1
J T
= Z [I‘m,nlogfm,n — n;n (Klog2w + K
n=1
N N
Hog|dmnl)] = > Tmn 10gY Tomn (8)
n=1 n=1

where, fim,n, Om,n, Wm,n, 'mn denote the mean vector, co-
variance matrix, mixture weight, and expected number of
occupied frames of the newly synthesized n’th Gaussian dis-
tribution for the node S,,. The flow chart of our proposed
method is presented in Fig.3.

4. EXPERIMENTAL RESULTS

The performance of telephone speech triphones trained by
the proposed and conventional methods were compared in
the recognition of phonetically balanced sentences.

(1) Training untied triphones of mixture Gaussians
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Fig. 3. Flow chart of state tying.

The conventional HMM training procedure was com-
prised of the following steps.

1. Training untied triphones of single Gaussians

2. Processing conventional decision tree based state ty-
ing on the triphones

Repeating the embedded training three times
Mixture incrementing to obtain 2 mixture triphones
Repeating the embedded training three times
Mixture incrementing to obtain 4 mixture triphones

Repeating the embedded training three times

PN o w

Mixture incrementing to obtain 8 mixture triphones
9. Repeating the embedded training three times

Triphones of two, four, and eight mixtures were obtained
in the course of these steps. Our proposed method onn the
other hand was comprised of the following steps.

1. Training untied triphones of mixture Gaussians

2. Processing proposed decision tree based state tying
on the triphones of mixture Gaussians

3. Repeating the embedded training three times
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Fig. 4. Phoneme accuracy as a function of the number of
mixtures and iterations of embedded training.

Triphones of two, four, and eight mixtures were obtained
in separate procedures. Evaluation was made on triphones
just after the decision tree based state tying and on tri-
phones after three iterations of embedded training.

The two methods were applied for training male and
female gender-dependent models. Training data were 9,000
phonetically balanced sentences uttered by 1,057 male speak-
ers and 10,700 sentences uttered by 506 female speakers.
Feature parameters were 12 MFCC coefficients, their first
and second order derivatives, and the first and second order
logarithmic power derivatives. The triphones after decision
tree based state tying had nearly the same number of HMM
states (1200). Male models and female models were evalu-
ated separately. Test sets were 990 phonetically balanced
sentences uttered by 30 male and 30 female speakers.

Accuracy of both male and female models for phoneme
recognition with Japanese syllabic constraints are shown
on Fig. 4. The horizontal axis indicates the number of
mixtures of a state and the figures in the brackets are the
number of embedded training iterations. The dashed lines
represent the scores of our proposed method for two, four,

and eight mixtures, whereas the solid line represents scores
of the conventional method. First of all, it is clear that
our proposed method reduced the number of HMM train-
ing steps, for example from 12 iterations of embedded train-
ing to 3 iterations in the 8 mixture case. As a result, our
proposed method achieved a 67% reduction in the training
time despite increased computations in the decision tree
based state tying. In terms of phoneme accuracy, the tri-
phones just after our proposed decision tree based state ty-
ing exceeded those obtained by mixture incrementing. Even
after three iterations of embedded training, the triphones
of our proposed method exceeded those of the conventional
method, being 1 to 2 points higher in all the cases for both
male and female models. (Scores after three iterations of
embedded training were found to be nearly saturated to the
maximum score.) Better initial models for embedded train-
ing maintains their superior scores after several iterations
of embedded training.

5. CONCLUSIONS

This paper has presented an effective approach to synthe-
sizing mixture Gaussian distributions in decision tree based
state tying. This method makes it possible to handle mix-
ture Gaussian HMMs with decision tree based state ty-
ing algorithm and provides better state tyings for target
mixture Gaussian HMMs used in speech recognition. We
applied this method to training of telephone speech tri-
phones. Experimental results on phonetically balanced sen-
tence tasks showed a 1 to 2 point improvement in phoneme
accuracy. Our method also greatly reduced the steps of
HMM training procedure and achieved a 67% reduction in
training time.
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