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ABSTRACT

In mobile communications the strength of a line of sight
component measured by the K factor of the Ricean received
envelope distribution has significant impact on system per-
formance analysis and link budget calculations. In this pa-
per, we study the performance of moment-based estimators
for the Ricean K -factor as less complex alternatives to the
maximum likelihood estimator. Our asymptotic analysisre-
vedls that the estimators that rely on lower-order moments
have a better asymptotic performance for moderate/large
values of K. We aso illustrate, by Monte Carlo smula-
tions, that the fading correlation among the envelope sam-
ples deteriorates the estimator performance. The simplest
estimator, which can be expressed in closed form in terms of
the second- and fourth-order sample moments offers a good
compromise between statistical performance and computa-
tional simplicity.

1. INTRODUCTION

In mobile communications, when aline of sight (LOS) com-
ponent is present between the transmitter and the receiver,
the received signal is given by the sum of a sinusoid and
narrow-band Gaussian noise, whose envelope is known to
have the Ricean distribution (see e.g., [9]). The Rice proba-
bility density function (PDF) of the received envelope R(t)
isgiven by:

pR(T) = 0 0
< I (2r @) (1)

where I,,(+) isthent" order modified Bessel function of the
first kind, K > 0 is the Ricean factor and Q2 := E[R>(t)].
The K factor is given by the ratio of the LOS component’s
power to the power of the narrow-band Gaussian noise, and
its estimation is important in link budget calculations [3],
and for determination of the channel quality. Simple esti-
mation techniques for the K-factor are also of importance
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in the optimization of transmit diversity schemes and adap-
tive transmission systems (see, e.g. [4] for the estimation
of the Nakagami m parameter, which is a similar measure
of channel quality, for transmitter diversity optimization).
Notice that when K = 0 there is no LOS component, in
which case the distribution of the received envel opereduces
to Rayleigh.

The maximum-likelihood estimator (MLE) for the K
parameter from independent and identically distributed (i.i.d.)
samples of the envelope entailsfirst calculating the MLE es-
timator for 2, which is given by O = fi2, where fi,, :=
N1 N°F R™(kT,) denotes the n'* sample moment, T,
is the sampling period, and N is the number of available
samples 1. The MLE for K can then be obtained by substi-
tuting Qarr, for Q in the likelihood function and maximiz-
ing the resulting nonlinear equation with respect to K [10].
However, such a solution is computationally complex. The
expectation maximization algorithm has been proposed in
[6] to reduce the complexity, but it is still not easy to use.
The distribution-fitting approachesin [3] providerobust, but
nevertheless, computationally complex alternatives, which
are not easy to implement online. In this paper, we will in-
vestigate the performance of moment-based estimators for
K which are simpler than the aternatives mentioned above.

2. MOMENT-BASED ESTIMATORSFOR K
The moments of the Ricean distribution are given by [9]:

pn = ER"(D)] = (20°)" T (n/2+1) exp(-K)
x 1F1(n/2+ LK), @)

where 202 isthe power of the narrow-band noise and can be
shown to be equal to Q/(K + 1), 1Fi(+;+;+) is the conflu-
ent hypergeometric function, and I'(+) is the gamma func-
tion. We see from (2) that the moments depend on the two
unknown parameters K and o. Hence, a moment-based es-
timator will require estimates of two different moments of
R(t). More specifically, suppose that for n # m we de-
fine the following functions of K (recall that y,, isthe nt"

Iwe will drop the dependence of /i, on N for notational convenience.



moment of R(t)):

nmmnzgi. ©)
Since f,,,m(K) depends only on K and not on o we can
construct moment-based estimators for K by using sample
moments instead of the ensemble valuesin (3) and then in-
verting the corresponding f, ., (K'), to solvefor K. Hence,
an estimator that depends on the m** and n** moments
could be expressed as:

Kn,m = n}n (Z_;n> ) (4)
provided that theinversefunction f 1 (-) exists. For al the
values of m and n we considered, f,, ,»,(K) is amonotone
increasing function in the interval K € (0, o0), and hence
theinversefunction £, () exists.

The natural choice for (n,m) is (1,2) since this selec-
tion involves the lowest order moments. Whenn = 1 and
m = 2, (3) can be calculated using (2) as:

me K

) = m[(K+ 1)%(%
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The corresponding estimator K, .2 involvesthe complex nu-
merical procedure of inverting (5). This estimator has been
discussed in [7] and its performancewas studied in detail in
[10] via simulations where it was found that & 1,2 performs
similarly to the MLE.

A smpler aternative to K » is K, 4. It can be shown
using (2) and (3) that

(K +1)2

Ky=—-—" 7
f2.4(K) K? +4K +2

(6)
Clearly, calculating f;,i(K) involves finding the roots of a
second-order polynomial which can be donein closed form.
It can be shown that one of the roots of this polynomial
is always negative which can be discarded since K > 0,
yielding a unique positive solution for f(M which is given
by:

o =215+ iy + fia /2015 — fuy
Ky = 5 . (7
Hy — Ha

The estimator in (7) has been independently proposedin [2]
and [8], though not presented in this form. In what follows,
we will derive asymptotic variance (AsV) expressions for
K, specificaly focusing on the performance of K » as
compared with K 4.

3. ASYMPTOTIC VARIANCE OF K-ESTIMATORS

Using the resultsin [5, pp. 60] it can be shown that for the
moment-based estimators K, ,,, imy 00 VN (K. — K)

is a Gaussian random variable with mean zero, and variance
given by:

lim N var (K’nm — K)
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where f,, ,,,(K) is the derivative of f,, ,,,(K) with respect
to K, and can be computed using (2) and (3). All moment-
based estimators, & n.m» e/ N-congistent, asymptotically
normal, and asymptotically unbiased [1]. Moreover, the
AsV isgiven by (8). Noticethat K, ,, = K,,.,, which can
be shown using the fact that f,,},(z) = f,,}.(1/z). Inter-
changing m and n in (8), then, should not change the AsV,
which is seen to be the case after computing (8) fully as a
function of K.

In order to compare the AsV expression in (8) with a
benchmark, we numerically computed the Cramer-Rao bound
(CRB), which provides a lower bound for the variance of
any unbiased estimator. The CRB was aso reportedin [10],
and is given by:

1
I (e lupr(r))’ pr(r)dr

CRB(K) = )
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Fig. 1. Asymptotic Performance of K -estimators

In Figure 1, we plotted the asymptotic standard devia-
tion (std) expressions for Kl 2, K1 4, and Kz 4 aswell as



the sgquare root of the CRB to understand the performance
of moment-based estimators for large sample sizes. We no-
tice that as K gets smaller and smaller, making the Ricean
pdf more and more like Rayleigh, no estimator can esti-
mate K accurately, because the CRB goes to infinity. We
also observe that the most accurate estimation of K is pos-
siblearound K = 1, and as K increases, the square-root of
the AsV goesto infinity approximately linearly. Among the
moment-based estimators, K » hasthe least AsV for mod-
erate/large K, and is in fact very close to the CRB, which
leads us to conclude that IA(LQ is almost asymptotically ef-
ficient. Aswe expected, increasing m and n result in larger
AsV for moderate/large K. Indeed, the simple estimator
IA(ZA in (7), for which thereis a closed form expression, has
agreater AsV than K, 4 or K, », have. Another interesting
observationisthat K 4 hassmaller AsV than K, » for small
vaues of K < 1, even though it employs higher-order mo-
ments. The difference between the asymptotic variances of
Ky 4and K, , for K < 1istoosmall tobevisiblein Figure
1. In order to see this difference, we plotted the asymptotic
stds of K9, K13, K14, and K, 4 minus the square root
of the CRB in Figure 2 for small values of K. We observe
that the estimators which employ higher-order moments are
better asymptoticaly, for sufficiently small K. The practi-
cal significance of this result is that, if we have large data
samples available, and we would like to detect the presence
or absence of a LOS component (in which case the value
of K would typically be small), we might be interested in
employing K 4 instead of K ,, to perform the hypothesis
testing.
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Fig. 2. Asymptotic Performance of K -estimators (small K)
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4. EFFECT OF FINITE SAMPLE SIZE

In order to study the effect of finite sample size on the per-
formance of K, and K> 4, we resorted to Monte Carlo
simulations. For any fixed K fromtheset {0.5,1,1.5,...,
19.5, 20}, broad enough to cover a practical range of the K
parameter [2], andforany N € {100, 1000}, 500 sequences
of i.i.d. samples of length N were generated for K’Lz and
K,.4. Let K(j) denote the j** Monte Carlo realization of
gither K 5 or K> 4. For both of these estimators the sample
bias 500~ 7% [K (j) — K] isplottedin Figure 3versus K
together with the sample confidence region defined by +2
SSTD(K), where SSTD(K) is the sample std of K, defined
as.

500 500

SSTD(K) :=, [500~1 Y K2(j) — (5001 > K(j))? .

The sample confidence region defined hereis useful for ex-
amining the estimator variationsin termsof K and V.
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Fig. 3. Monte Carlo simulation for finite sample sizes

In Figure 3, we observethat, as expected, the confidence
region and the samplebiasissmaller for larger sample sizes.
We also observethat for moderate/large K, increasing K in-
creasesthe bias especialy for N = 100 for both estimators.
Finally, we point out that the performance of K , and K, 4
are very similar for both sample sizes.
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5. THE EFFECT OF CORRELATION

In practice, adjacent signal samples can be highly corre-
lated. To analyze the impact of correlated samples on the
performanceof K, », and K, 4, we again used Monte Carlo
simulations. Using the same simulation procedure as before
and for N = 1,000, we generated 500 Rice distributed en-
velopetime-serieswhose corresponding in-phase and quadra-
ture components have the Clarke-Jakes's correlation func-
tion[9], Jo(27 fpT), where Jy(-) is the zeroth order Bessel
function of the first kind, and fp is the maximum Doppler
frequency. Figure 4 showsthe simulation resultsfor two dif-
ferent mobile speeds (different fps), at a sampling rate of
1/Ts = 243 Hz corresponding to samplestaken froman I1S-
136 system every 100 symbols. For both estimators, the cor-
relation among samples, which increases with decreasing
mobile speed, introduces a positive bias which grows with
K and also broadens the sample confidence region (more
estimator variation). Based on the simulation results, we
concludethat K » and K 4 still perform similarly even for
correlated samples, and that the samples should be chosen
far apart to avoid the del eterious effects of correlation onthe
estimates.
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Fig. 4. Monte Carlo ssmulation for correlated samples

6. CONCLUSIONS

In this paper, we have studied the performance of moment-
based estimators for the Ricean K -factor, that are simple
aternatives to the MLE. We have derived an expression for

the asymptotic variance (AsV) givenin (8). Specificaly we
were interested in f{m because it involves the lowest or-
der sample moments, and K, 4 becauseit hasa closed-form
expression in terms of the sample moments. We have seen
that the AsV of f{l,z is very close to the CRB and smaller
than the AsV of K> 4 for moderate/large K. We have also
observed that for small values of K, moment-based esti-
mators that rely on higher-order moments can have smaller
variance.

The effect of finite sample size is also investigated via
Monte Carlo simulations, which led usto concludethat K 1,2
and f(274 perform similarly also when the sample size is
small. The study of correlation effects suggests that for low
mobile speeds (small Doppler spread), which introducessig-
nificant correlation among the envelope samples, closely-
spaced samples deteriorate the estimators performance. In
anutshell, K. 2,4 In (7) offers a good compromise between
computational convenienceand statistical efficiency and could
be recommended for practical implementation.
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