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Cihan Tepedelenlioğlu, Ali Abdi, Georgios B. Giannakis, and Mostafa Kaveh

Dept. of Elec. and Comp. Engr., Univ. of Minnesota, Minneapolis, MN 55455, U.S.A.

ABSTRACT
In mobile communications the strength of a line of sight
component measured by theK factor of the Ricean received
envelope distribution has significant impact on system per-
formance analysis and link budget calculations. In this pa-
per, we study the performance of moment-based estimators
for the Ricean K-factor as less complex alternatives to the
maximum likelihood estimator. Our asymptotic analysis re-
veals that the estimators that rely on lower-order moments
have a better asymptotic performance for moderate/large
values of K. We also illustrate, by Monte Carlo simula-
tions, that the fading correlation among the envelope sam-
ples deteriorates the estimator performance. The simplest
estimator, which can be expressed in closed form in terms of
the second- and fourth-order sample moments offers a good
compromise between statistical performance and computa-
tional simplicity.

1. INTRODUCTION

In mobile communications, when a line of sight (LOS) com-
ponent is present between the transmitter and the receiver,
the received signal is given by the sum of a sinusoid and
narrow-band Gaussian noise, whose envelope is known to
have the Ricean distribution (see e.g., [9]). The Rice proba-
bility density function (PDF) of the received envelope R(t)
is given by:
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where In(�) is the nth order modified Bessel function of the
first kind, K � 0 is the Ricean factor and 
 := E[R2(t)].
The K factor is given by the ratio of the LOS component’s
power to the power of the narrow-band Gaussian noise, and
its estimation is important in link budget calculations [3],
and for determination of the channel quality. Simple esti-
mation techniques for the K-factor are also of importance
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in the optimization of transmit diversity schemes and adap-
tive transmission systems (see, e.g. [4] for the estimation
of the Nakagami m parameter, which is a similar measure
of channel quality, for transmitter diversity optimization).
Notice that when K = 0 there is no LOS component, in
which case the distribution of the received envelope reduces
to Rayleigh.

The maximum-likelihood estimator (MLE) for the K
parameter from independent and identically distributed (i.i.d.)
samples of the envelope entails first calculating the MLE es-
timator for 
, which is given by 
̂ML = �̂2, where �̂n :=
N�1

PN�1
k=0 Rn(kTs) denotes the nth sample moment, Ts

is the sampling period, and N is the number of available
samples 1. The MLE for K can then be obtained by substi-
tuting 
̂ML for 
 in the likelihood function and maximiz-
ing the resulting nonlinear equation with respect to K [10].
However, such a solution is computationally complex. The
expectation maximization algorithm has been proposed in
[6] to reduce the complexity, but it is still not easy to use.
The distribution-fitting approaches in [3] provide robust, but
nevertheless, computationally complex alternatives, which
are not easy to implement online. In this paper, we will in-
vestigate the performance of moment-based estimators for
K which are simpler than the alternatives mentioned above.

2. MOMENT-BASED ESTIMATORS FOR K

The moments of the Ricean distribution are given by [9]:

�n := E[Rn(t)] = (2�2)n=2 � (n=2 + 1) exp(�K)

� 1F1 (n=2 + 1; 1;K) ; (2)

where 2�2 is the power of the narrow-band noise and can be
shown to be equal to 
=(K + 1), 1F1(�; �; �) is the conflu-
ent hypergeometric function, and �(�) is the gamma func-
tion. We see from (2) that the moments depend on the two
unknown parameters K and �. Hence, a moment-based es-
timator will require estimates of two different moments of
R(t). More specifically, suppose that for n 6= m we de-
fine the following functions of K (recall that �n is the nth

1We will drop the dependence of �̂n on N for notational convenience.



moment of R(t)):

fn;m(K) :=
�mn
�nm

: (3)

Since fn;m(K) depends only on K and not on � we can
construct moment-based estimators for K by using sample
moments instead of the ensemble values in (3) and then in-
verting the corresponding fn;m(K), to solve for K. Hence,
an estimator that depends on the mth and nth moments
could be expressed as:

K̂n;m := f�1n;m

�
�̂mn
�̂nm

�
; (4)

provided that the inverse function f �1n;m(�) exists. For all the
values of m and n we considered, fn;m(K) is a monotone
increasing function in the interval K 2 (0;1), and hence
the inverse function f�1n;m(�) exists.

The natural choice for (n;m) is (1; 2) since this selec-
tion involves the lowest order moments. When n = 1 and
m = 2, (3) can be calculated using (2) as:

f1;2(K) =
�e�K

4(K + 1)
[(K + 1)I0(

K

2
) +KI1(

K

2
)]2 : (5)

The corresponding estimator K̂1;2 involves the complex nu-
merical procedure of inverting (5). This estimator has been
discussed in [7] and its performance was studied in detail in
[10] via simulations where it was found that K̂1;2 performs
similarly to the MLE.

A simpler alternative to K̂1;2 is K̂2;4. It can be shown
using (2) and (3) that

f2;4(K) =
(K + 1)2

K2 + 4K + 2
: (6)

Clearly, calculating f�12;4 (K) involves finding the roots of a
second-order polynomial which can be done in closed form.
It can be shown that one of the roots of this polynomial
is always negative which can be discarded since K > 0,
yielding a unique positive solution for K̂2;4 which is given
by:

K̂2;4 =
�2�̂22 + �̂4 + �̂2

p
2�̂22 � �̂4

�̂22 � �̂4
: (7)

The estimator in (7) has been independently proposed in [2]
and [8], though not presented in this form. In what follows,
we will derive asymptotic variance (AsV) expressions for
K̂n;m specifically focusing on the performance of K̂1;2 as
compared with K̂2;4.

3. ASYMPTOTIC VARIANCE OF K-ESTIMATORS

Using the results in [5, pp. 60] it can be shown that for the
moment-based estimators K̂n;m, limN!1

p
N(K̂n;m�K)

is a Gaussian random variable with mean zero, and variance
given by:

lim
N!1

N var
�
K̂n;m �K

�

=

�
m��nm �m�1n

f 0n;m(K)

�2
(�2n � �2n)

� 2
m��nm �m�1n

f 0n;m(K)

n��n�1m �mn
f 0n;m(K)

(�n+m � �n�m)

+

�
n��n�1m �mn
f 0n;m(K)

�2
(�2m � �2m) ; (8)

where f 0n;m(K) is the derivative of fn;m(K) with respect
to K, and can be computed using (2) and (3). All moment-
based estimators, K̂n;m, are

p
N -consistent, asymptotically

normal, and asymptotically unbiased [1]. Moreover, the
AsV is given by (8). Notice that K̂n;m = K̂m;n which can
be shown using the fact that f�1n;m(x) = f�1m;n(1=x). Inter-
changing m and n in (8), then, should not change the AsV,
which is seen to be the case after computing (8) fully as a
function of K.

In order to compare the AsV expression in (8) with a
benchmark, we numerically computed the Cramer-Rao bound
(CRB), which provides a lower bound for the variance of
any unbiased estimator. The CRB was also reported in [10],
and is given by:

CRB(K) =
1R

1

0

�
@
@K [ln pR(r)]

�2
pR(r)dr

: (9)
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Fig. 1. Asymptotic Performance of K-estimators

In Figure 1, we plotted the asymptotic standard devia-
tion (std) expressions for K̂1;2, K̂1;4, and K̂2;4 as well as



the square root of the CRB to understand the performance
of moment-based estimators for large sample sizes. We no-
tice that as K gets smaller and smaller, making the Ricean
pdf more and more like Rayleigh, no estimator can esti-
mate K accurately, because the CRB goes to infinity. We
also observe that the most accurate estimation of K is pos-
sible around K = 1, and as K increases, the square-root of
the AsV goes to infinity approximately linearly. Among the
moment-based estimators, K̂1;2 has the least AsV for mod-
erate/large K, and is in fact very close to the CRB, which
leads us to conclude that K̂1;2 is almost asymptotically ef-
ficient. As we expected, increasing m and n result in larger
AsV for moderate/large K. Indeed, the simple estimator
K̂2;4 in (7), for which there is a closed form expression, has
a greater AsV than K̂1;4 or K̂1;2 have. Another interesting
observation is that K̂1;4 has smaller AsV than K̂1;2 for small
values of K < 1, even though it employs higher-order mo-
ments. The difference between the asymptotic variances of
K̂1;4 and K̂1;2 forK < 1 is too small to be visible in Figure
1. In order to see this difference, we plotted the asymptotic
stds of K̂1;2, K̂1;3, K̂1;4, and K̂2;4 minus the square root
of the CRB in Figure 2 for small values of K. We observe
that the estimators which employ higher-order moments are
better asymptotically, for sufficiently small K. The practi-
cal significance of this result is that, if we have large data
samples available, and we would like to detect the presence
or absence of a LOS component (in which case the value
of K would typically be small), we might be interested in
employing K̂2;4 instead of K̂1;2, to perform the hypothesis
testing.
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Fig. 2. Asymptotic Performance of K-estimators (small K)

4. EFFECT OF FINITE SAMPLE SIZE

In order to study the effect of finite sample size on the per-
formance of K̂1;2 and K̂2;4, we resorted to Monte Carlo
simulations. For any fixed K from the set f0:5; 1; 1:5; : : : ;
19:5; 20g, broad enough to cover a practical range of the K
parameter [2], and for anyN 2 f100; 1000g, 500 sequences
of i.i.d. samples of length N were generated for K̂1;2 and
K̂2;4. Let K̂(j) denote the jth Monte Carlo realization of
either K̂1;2 or K̂2;4. For both of these estimators the sample
bias 500�1

P500

j=1[K̂(j)�K] is plotted in Figure 3 versusK
together with the sample confidence region defined by �2
SSTD(K̂), where SSTD(K̂) is the sample std of K̂, defined
as:

SSTD(K̂) :=

vuut500�1
500X
j=1

K̂2(j)� (500�1
500X
j=1

K̂(j))2 :

The sample confidence region defined here is useful for ex-
amining the estimator variations in terms of K and N .
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Fig. 3. Monte Carlo simulation for finite sample sizes

In Figure 3, we observe that, as expected, the confidence
region and the sample bias is smaller for larger sample sizes.
We also observe that for moderate/largeK, increasingK in-
creases the bias especially for N = 100 for both estimators.
Finally, we point out that the performance of K̂1;2 and K̂2;4

are very similar for both sample sizes.



5. THE EFFECT OF CORRELATION

In practice, adjacent signal samples can be highly corre-
lated. To analyze the impact of correlated samples on the
performance of K̂1;2 and K̂2;4, we again used Monte Carlo
simulations. Using the same simulation procedure as before
and for N = 1; 000, we generated 500 Rice distributed en-
velope time-series whose corresponding in-phase and quadra-
ture components have the Clarke-Jakes’s correlation func-
tion [9], J0(2�fD�), where J0(�) is the zeroth order Bessel
function of the first kind, and fD is the maximum Doppler
frequency. Figure 4 shows the simulation results for two dif-
ferent mobile speeds (different fDs), at a sampling rate of
1=Ts = 243 Hz corresponding to samples taken from an IS-
136 system every 100 symbols. For both estimators, the cor-
relation among samples, which increases with decreasing
mobile speed, introduces a positive bias which grows with
K and also broadens the sample confidence region (more
estimator variation). Based on the simulation results, we
conclude that K̂1;2 and K̂2;4 still perform similarly even for
correlated samples, and that the samples should be chosen
far apart to avoid the deleterious effects of correlation on the
estimates.
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Fig. 4. Monte Carlo simulation for correlated samples

6. CONCLUSIONS

In this paper, we have studied the performance of moment-
based estimators for the Ricean K-factor, that are simple
alternatives to the MLE. We have derived an expression for

the asymptotic variance (AsV) given in (8). Specifically we
were interested in K̂1;2 because it involves the lowest or-
der sample moments, and K̂2;4 because it has a closed-form
expression in terms of the sample moments. We have seen
that the AsV of K̂1;2 is very close to the CRB and smaller
than the AsV of K̂2;4 for moderate/large K. We have also
observed that for small values of K, moment-based esti-
mators that rely on higher-order moments can have smaller
variance.

The effect of finite sample size is also investigated via
Monte Carlo simulations, which led us to conclude that K̂1;2

and K̂2;4 perform similarly also when the sample size is
small. The study of correlation effects suggests that for low
mobile speeds (small Doppler spread), which introduces sig-
nificant correlation among the envelope samples, closely-
spaced samples deteriorate the estimators’ performance. In
a nutshell, K̂2;4 in (7) offers a good compromise between
computational convenience and statistical efficiency and could
be recommended for practical implementation.
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