
DECISION FEEDBACK EQUALIZER WITH TWO'S COMPLEMENT COMPUTATION
SHARING MULTIPLICATION

Hunsoo Choo,
�
Khurram Muhammad and Kaushik Roy

School of Electrical and Computer Engineering, Purdue University
West Lafayette, IN 47907, USA�

Texas Instruments Inc., Dallas, TX 75243�
chooh,kaushik � @ecn.purdue.edu, k-muhammad1@ti.com

ABSTRACT

We present an architecture of a high performance decision feed-
back equalizer based on a computation sharing multiplier. The
computation sharing multiplier (CSHMR) uses a redundant num-
ber scheme and targets removal of computational redundancy by
computation re-use. Use of CSHMR leads to high performance
FIR filtering operation by re-using optimal precomputations. A de-
cision feedback equalizer (DFE) implementation based on CSHMR
in a 0.35 � technology shows 34% improvement in the operating
speed over DFE using Wallace tree multiplier.

1. INTRODUCTION

The decision feedback equalizer is composed of two linear filters
(feedback and feedforward filter) and a non-linear decision unit.
The order of the filter in the DFE depends on the channel charac-
teristic and symbol rate. At a high symbol rate, high order FIR
filter with faster processing speed is desired. Hence, computa-
tion complexity and speed of adaptation are critical considerations
for a DFE. In our work, we focus on reducing the computation
complexity of the filter used in the DFE. A computation sharing
multiplier (CSHM) architecture, which identifies common com-
putations and shares them between different multiplications was
suggested in [1, 2]. We modified it so that CSHM can work with
two's complement number and used carry-save optimization tech-
nique to improve its performance. The resulting multiplier is used
to implement a DFE which is shown to have lower complexity and
higher operating speed. CSHMR and DFE are modeled in VHDL
and their layouts are obtained using auto placing and routing. Path-
mill and powermill are used to get the simulation results.

The rest of this paper is organized as follows. In section 2,
carry-save optimization technique is described. Section 3 explains
the algorithm and the architecture of CSHMR. The implementa-
tion of DFE is presented in section 4. Sections 5 and 6 present the
numerical results and conclusions, respectively.

2. CARRY-SAVE REDUNDANT NUMBER SCHEME

A straight-forward way to implement arithmetic functions is to
compute the final result by propagating carry. Hence, in a sequence
of such operations, carry is propagated at the end of every opera-
tion. We refer to this approach as non-redundant number scheme
(NRS). Alternatively, a relaxed rule can be applied such that two
numbers, the sum of which is equal to the final result, can be gen-
erated as two outputs of an arithmetic operation [3]. For example,

Partial Product Gen.

CS Array Adders

        Accumulator

Partial Product Gen.

CS Array Adders

Vector Merger Adder

        Accumulator

Multiplier

Macro function block
CS Tree Adder

3

3

Fig. 1. Carry-sum redundant number scheme.

consider filtering operation where an accumulator follows a mul-
tiplier. The carry-save multiplier (CSM) is used for multiplication
and CS adder is used as an accumulator.

The CSM can be decomposed into three function blocks: par-
tial products generation, CS adder block and vector merger adder
(VMA) [3]. Suppose the CS adder block adds all partial products
and generates two signals representing 7 and 9 (see figure 1). The
VMA adds these two final outputs using carry propagation to gen-
erate the end result 16 in NRS. If 3 is subsequently added, another
carry propagation must complete to obtain the final result in NRS.
In this approach, the delay of VMA contributes a large part of total
delay, since a carry has to propagate from LSB to MSB in VMA.
Alternatively, the three values may be added without propagating
carry in the intermediate sum (of 7 and 9) which is kept as two
outputs in NRS and to which the third number (3) is added. This
removes a VMA delay from the overall operation. This principle is
used in constructing array multipliers. We will refer to this scheme
as carry-save redundant number scheme (CSRS).

3. MULTIPLIER ARCHITECTURE

3.1. Computation Sharing Multiplication

A set of bit sequences can be selected for pre-computation such
that the result of a multiplication can be obtained by add and shift
operations of these pre-computations. For instance, �����	�
����
 � can
decomposedas �����	�
����
 ��������
����
���	����
�� . If both �����	�
����� and � are
available, the entire multiplication process is reduced to a few add
and shift operations. We will refer to these chosen bit sequences as
alphabets. When multiplying a vector by a scalar, one can define
an alphabet set to be a set of alphabets that spans all the coef-
ficients in the vector. A multiplier architecture which minimized
the total precomputations for multiplying a vector by a scalar us-
ing optimal alphabets was introduced in [1, 2] which is referred to



as CSHM.
In a filter with coefficient vector C, the � th coefficient ��� can

be decomposed as
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the ! th alphabet set, for "#� �%$���$ ��$'&'&'&($*) . (Note that many al-
phabet sets can be composed). If we multiply the scalar � to both
sides of equation (1), the multiplication �+� 
 � can be expressed as����
�� = ,.-0/21
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 � . Hence, multiplication ����
�� can be sig-

nificantly simplified to add and shift operations of �
	
� � 
 � , which

is multiplications of � and all the elements of the predetermined
alphabets.

3.2. Multiplication Algorithm for two's complement

The advantage of CSHM is due to the shift operation of precom-
puted values to obtain partial products of different bit levels [1]. To
use shift operation in two's complement multiplication as in sign
magnitude multiplication, Baugh-Wooley algorithm can be used
[4], [5].

The product of two two's complement numbers, is expressed
as follows

4 5 67�8:9 ; 8�<(= ; 8�<�> ; 8?9@A 5%B 9 A = ADCE 67�8:9F; 8�<*G ; 8�<H> ; 8:9@I 5:B 9 I G I CE
5 ; 8?9@A 5:B ; 8:9@I 5%B 9 A > I = A G I > 9 9 ; 8:9'= ; 8�< G ; 8�< > 9 ;J8K9 9 ; 8�<

> 67 ; 8:9@I 5:B 9 I = ; 8�< G I > ; 8:9@A 5:B 9 A G ; 8�< = A CE 9 ; 8�<
(2)

Equation 2 shows that the multiplication of two's complement
numbers can be written in a form which involves only positive bit
products. Figure 2 shows how this algorithm works in the case
of a 4x4 multiplication. The first three rows are referred to as
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Fig. 2. Example of Baugh-Wooley algorithm: 4x4.

PM ( partial products with magnitude part) and generated by one
NAND and three AND operations. The fourth row is called as PS
(partial products with sign bit) and generated by one AND and
three NAND operations with a sign bit.

Consider the partial products of PM. Suppose �'LM�N� � in fig-
ure 2. Then the third row can be obtained by shifting the first row
by 2 bits. Likewise, shift operation can be used to obtain a partial
product of different bit level as in sign magnitude multiplication.
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Fig. 3. Architecture of computational sharing multiplier using
CSRS.

3.3. Computational Sharing Multiplier with Redundant Num-
ber Scheme

Figure 3 shows the basic architecture of the CSHMR which is com-
posed of three sub-blocks: Precomputer, Select&Shift (S&S) and
CS adder tree. For 17x17 multiplier implementation, the optimal
alphabet set O ��$QP%$*R�$(S?$QT:$ ����$��(P%$ �UR�V [2] is used and each alphabet
is represented as a 4 bit unsigned number.

Suppose we are computing WYX[Z2� . The precomputer gener-
ates the partial products which correspond to PM with input W and
every alphabet, and adds them. The summation of all the partial
products are represented in carry-save (CS) redundant number and
stored in the precomputer for re-use. The S&S consists of four
Select/Shift units (SSU) and PS generator. The scalar Z2� comes
in and is partitioned into smaller bit sequences having the same
length as the alphabets excluding the sign bit. Depending on these
bit sequences, each SSU selects proper precomputed values (C and
S), and shifts them to generate the correct values corresponding to
the partial products of PM of target multiplication. The SSU gen-
erate one more output: the correction value. For example, suppose
we have already computed the PM of \ 
^] , where ] is � � ��L(� 1 � �
(figure 2), and want to compute the multiplication of \ 
F_ , where _
is � � � 1 � � � . According to the Baugh-Wooley algorithm, the PM of\ 
�_ can be obtained by shifting the PM of \ 
�] . However, addi-
tional value `1 0 0 0' has to be added to compute the correct result,
which is generated by '0' at LSB. Hence, a correction term is re-
quired to compensate for this additional value. Table 3.3 shows the
correction values based on shift signal.

Shift Signal Correction Values ` 19:16 a
00 0000
01 0001
10 0011
11 0111

Table 1.

The S&S also generates the PS using one AND and several
NAND bit operations with a sign bit of scalar. Finally, all the
outputs from S&S are generated. These are inserted into the carry-
save adder which is the last stage of the multiplier. The additions
of ��bc�:d�e3f � L b /H1 of the Baugh-Wooley algorithm are integrated
into this CS adder. Figure 4 shows an example of CSHMR multi-
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Fig. 4. Example of CSHMR computation : f���P	�����	� � � � ���0Xf ���	��������� ��� � � .
plication procedure: f���P3X f ��� . Here, f���P is the input W . In this
example, each number is represented as 7 bit two's complement
number. We use O ��$ P%$*R�$'S�V as alphabet set which are represented
in 3 bits. In the precomputer, �(W[$ P�W $ R+W and S+W are precom-
puted and stored as CS redundant number. Figure 4 shows the �(W
and P�W precomputation. When the scalar f ��� comes in, 6 bits
except the sign bit are divided into two sub sequences which are
����� and �
� � . � �
� is two bit shifted number of one �
�	� and ��� �
is one bit shifted number of three �	�
� . Hence, each S&S selects
and shifts C and S of �(W and P�W depending on the sub sequences.
Depending on the number of shifts, correction values are gener-
ated by S&Ss. For one bit shift, correction value is ���	� and �	�
� is
the correction value generated for two bit shift. The S&S also gen-
erates the PS. Finally, all the generated numbers are added after
proper shift operation. This addition is performed in the CS adder
tree.

3.4. Implementation of CSHMR

The use CSRS makes the maximum delay of the precomputer re-
duced to one full-adder and one inverter delay. Considering the bi-
nary numbers of ��$*P%$ R and T , they have only one or two 1's in their
binary representation. If we generate output in redundant number
system, no addition is required. Figure 5 (a) shows that shifting
is enough to implement �'W[$QP�W[$ R+W and T�W . For S�W $����'W[$ �(P�W
and ��R�W implementation, there is only one full-adder and one in-
verter delay. There are only three 1's in the binary representations
of 7, 11, 13 and 15. Hence, three operands has to be added for
precomputation of S+W[$ �
�'W[$ �'P�W and �UR+W . After one full-adder
addition, the number of operands is reduced to two. These two
numbers are used as redundant number outputs. Figure 5 (b) shows
the implementation of S+W .

Each SSU of the CSHMR is composed of two select/shifts of
the CSHM and a correction. Each select/shift deals with � and �
of the precomputed values in parallel. The control unit right shifts
the input bit sequence to find matching alphabet and generates en-
able and shift signals. Zero or shifted � and � are generated by
the ISHIFT depending on zero and shift signals. ISHIFT 1 gener-
ates “ ���
��� � &'&'& ��� ” and ISHIFT 2 generates “ �
���
��� &'&'&��
� ” when
zero signal is '1'.

4. IMPLEMENTATION OF DFE

A conventional minimum mean square error (MMSE) DFE us-
ing LMS algorithm for adaptation is implemented [6, 7]. Direct

X0

1X_Carry

7X_Carry
<1> <0>

1X_Sum

7X_Sum

(b)  Precomputation at cost of one full adder delay : 7X, 11X, 13X

(a)  Precomputation at cost of routing : 1X, 3X, 5X, 9X

"11100000000000000000" 

I<16:0> -> 1X_Sum<16:0>
"000"     -> 1X_Sum<19:17>

I<16:0>

I<16:0>

<19> <18> <17> <16> <3> <2>

FA FA FAHA FA

XX16
X3 X2 X14

Fig. 5. Implementation of precomputer.

Tri-State
Buffer

Tri-State
Buffer

Tri-State
Buffer

Tri-State
Buffer

Tri-State
Buffer

Tri-State
Buffer

Tri-State
Buffer

Tri-State
Buffer

enable

ISHIFT_2 Shifted C

Correction Value

20 bit

20 bit

4bit of MSB 

Zero

Shift 2 bit

Zero =1
Shifted S = "000000 .......00"

Shifted S

Select/Shift

Select/Shift

Zero =1
Shifted S = "111100 .......00"

C

of 1X

of 3X

of 13X

of 15X

of 1X

of 3X

of 13X

of 15X

S

enable

enable

ISHIFT_1

Control Logic Corector
Co 4 bit

Fig. 6. Select & Shift unit implementation.

form FIR filter is used for DFE. If FIR filter is implemented with
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Fig. 7. FIR filter implemented with CSHMR.

CSHMR, precomputer is at the input and all the multipliers in the
filter are replaced with the S&S and CS adder blocks. All the S&Ss
share the precomputation results of a single precomputer. Figure 7
shows the implementation of FIR filter.

Figure 8 describes the detailed architecture of DFE, and figure
9 shows the implementation of LMS algorithm. Feedforward and
feedback FIR filters are replaced with the FIR filter of figure 7
with 5 filter taps. In the implementation, the accumulators of each
FIR filter are integrated into one large carry-save tree adder which
also generates output in CS redundant number format. The vector
merger adder, which computes the final result in non-redundant
format, is inserted only when it is required.

5. RESULTS

DFEs using carry-save multiplier (CSM), Wallace tree multiplier
(WTM), CSHM and CSHMR are implemented for comparison.
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Figure 10 shows the speed and area of DFEs implemented us-
ing different multipliers. The maximum performance of the DFE
using the CSHM is improved by 13% compared with that of the
DFE using WTM. The performance of the DFE using the CSHMR
is improved by 34.8% by trading-off area. Figure 11 describes

Fig. 10. Performance and area comparison between DFEs using
different multipliers.

the measured power consumption of DFEs. The power consump-
tions of DFEs using CSHM and CSHMR at the maximum speed
show increased power consumptions by 57% and 165%, respec-
tively over the DFE using WTM. The power delay products (PDP)
of the DFE using the CSHM and the CSHMR are increased by
34.7% and 66.4%, respectively.

To compare the power dissipation at the same operating speed,
voltage scaling can be used. Reduction of supply voltage degrades
the performance by trading off the power dissipation which is pro-
portional to the second power of the supply voltage. Hence, we can
obtain the power dissipation improvement in two ways; reduced
supply voltage and the reduced frequency. The supply voltage of
the DFE using CSHM is reduced to 2.8 � . While, a supply of 2.2

� is applied to the DFE using CSHMR. For similar performance,

Fig. 11. Power and PDP of DFEs.

the power dissipation of DFE using CSHMR is 43% lower than
DFE using WTM.

The numerical results show that the CSHMR leads to high
performance filtering operation at the expense of the area and the
power. However, by a proper voltage scaling, high performance
can be achieved without loss of power consumption. Comparing
the CSHM and the CSHMR, the CSHMR leads to much higher
performance filtering operation.

6. CONCLUSION

In this paper, we presented the architecture of computation sharing
multiplier for two's complement numbers. This multiplier reduces
the computation complexity in filtering operation by computation
re-use. A high performance decision feedback equalizer is imple-
mented based on the suggested multiplier using carry-save redun-
dant number scheme. Using voltage scaling, high performance and
low power DFE can be achieved simultaneously.
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